Search for "iodonium" in Full Text gives 89 result(s) in Beilstein Journal of Organic Chemistry.
Beilstein J. Org. Chem. 2014, 10, 34–114, doi:10.3762/bjoc.10.6
Graphical Abstract
Figure 1: Five and six-membered cyclic peroxides.
Figure 2: Artemisinin and semi-synthetic derivatives.
Scheme 1: Synthesis of 3-hydroxy-1,2-dioxolanes 3a–c.
Scheme 2: Synthesis of dioxolane 6.
Scheme 3: Photooxygenation of oxazolidines 7a–d with formation of spiro-fused oxazolidine-containing dioxolan...
Scheme 4: Oxidation of cyclopropanes 10a–e and 11a–e with preparation of 1,2-dioxolanes 12a–e.
Scheme 5: VO(acac)2-catalyzed oxidation of silylated bicycloalkanols 13a–c.
Scheme 6: Mn(II)-catalyzed oxidation of cyclopropanols 15a–g.
Scheme 7: Oxidation of aminocyclopropanes 20a–c.
Scheme 8: Synthesis of aminodioxolanes 24.
Figure 3: Trifluoromethyl-containing dioxolane 25.
Scheme 9: Synthesis of 1,2-dioxolanes 27a–e by the oxidation of cyclopropanes 26a–e.
Scheme 10: Photoinduced oxidation of methylenecyclopropanes 28.
Scheme 11: Irradiation-mediated oxidation.
Scheme 12: Application of diazene 34 for dioxolane synthesis.
Scheme 13: Mn(OAc)3-catalyzed cooxidation of arylacetylenes 37a–h and acetylacetone with atmospheric oxygen.
Scheme 14: Peroxidation of (2-vinylcyclopropyl)benzene (40).
Scheme 15: Peroxidation of 1,4-dienes 43a,b.
Scheme 16: Peroxidation of 1,5-dienes 46.
Scheme 17: Peroxidation of oxetanes 53a,b.
Scheme 18: Peroxidation of 1,6-diene 56.
Scheme 19: Synthesis of 3-alkoxy-1,2-dioxolanes 62a,b.
Scheme 20: Synthesis of spiro-bis(1,2-dioxolane) 66.
Scheme 21: Synthesis of dispiro-1,2-dioxolanes 68, 70, 71.
Scheme 22: Synthesis of spirohydroperoxydioxolanes 75a,b.
Scheme 23: Synthesis of spirohydroperoxydioxolane 77 and dihydroperoxydioxolane 79.
Scheme 24: Ozonolysis of azepino[4,5-b]indole 80.
Scheme 25: SnCl4-mediated fragmentation of ozonides 84a–l in the presence of allyltrimethylsilane.
Scheme 26: SnCl4-mediated fragmentation of bicyclic ozonide 84m in the presence of allyltrimethylsilane.
Scheme 27: MCl4-mediated fragmentation of alkoxyhydroperoxides 96 in the presence of allyltrimethylsilane.
Scheme 28: SnCl4-catalyzed reaction of monotriethylsilylperoxyacetal 108 with alkene 109.
Scheme 29: SnCl4-catalyzed reaction of triethylsilylperoxyacetals 111 with alkenes.
Scheme 30: Desilylation of tert-butyldimethylsilylperoxy ketones 131a,b followed by cyclization.
Scheme 31: Deprotection of peroxide 133 followed by cyclization.
Scheme 32: Asymmetric peroxidation of methyl vinyl ketones 137a–e.
Scheme 33: Et2NH-catalyzed intramolecular cyclization.
Scheme 34: Synthesis of oxodioxolanes 143a–j.
Scheme 35: Haloperoxidation accompanied by intramolecular ring closure.
Scheme 36: Oxidation of triterpenes 149a–d with Na2Cr2O7/N-hydroxysuccinimide.
Scheme 37: Curtius and Wolff rearrangements to form 1,2-dioxolane ring-retaining products.
Scheme 38: Oxidative desilylation of peroxide 124.
Scheme 39: Synthesis of dioxolane 158, a compound containing the aminoquinoline antimalarial pharmacophore.
Scheme 40: Diastereomers of plakinic acid A, 162a and 162b.
Scheme 41: Ozonolysis of alkenes.
Scheme 42: Cross-ozonolysis of alkenes 166 with carbonyl compounds.
Scheme 43: Ozonolysis of the bicyclic cyclohexenone 168.
Scheme 44: Cross-ozonolysis of enol ethers 172a,b with cyclohexanone.
Scheme 45: Griesbaum co-ozonolysis.
Scheme 46: Reactions of aryloxiranes 177a,b with oxygen.
Scheme 47: Intramolecular formation of 1,2,4-trioxolane 180.
Scheme 48: Formation of 1,2,4-trioxolane 180 by the reaction of 1,5-ketoacetal 181 with H2O2.
Scheme 49: 1,2,4-Trioxolane 186 with tetrazole fragment.
Scheme 50: 1,2,4-Trioxolane 188 with a pyridine fragment.
Scheme 51: 1,2,4-Trioxolane 189 with pyrimidine fragment.
Scheme 52: Synthesis of aminoquinoline-containing 1,2,4-trioxalane 191.
Scheme 53: Synthesis of arterolane.
Scheme 54: Oxidation of diarylheptadienes 197a–c with singlet oxygen.
Scheme 55: Synthesis of hexacyclinol peroxide 200.
Scheme 56: Oxidation of enone 201 and enenitrile 203 with singlet oxygen.
Scheme 57: Synthesis of 1,2-dioxanes 207 by oxidative coupling of carbonyl compounds 206 and alkenes 205.
Scheme 58: 1,2-Dioxanes 209 synthesis by co-oxidation of 1,5-dienes 208 and thiols.
Scheme 59: Synthesis of bicyclic 1,2-dioxanes 212 with aryl substituents.
Scheme 60: Isayama–Mukaiyama peroxysilylation of 1,5-dienes 213 followed by desilylation under acidic conditio...
Scheme 61: Synthesis of bicycle 218 with an 1,2-dioxane ring.
Scheme 62: Intramolecular cyclization with an oxirane-ring opening.
Scheme 63: Inramolecular cyclization with the oxetane-ring opening.
Scheme 64: Intramolecular cyclization with the attack on a keto group.
Scheme 65: Peroxidation of the carbonyl group in unsaturated ketones 228 followed by cyclization of hydroperox...
Scheme 66: CsOH and Et2NH-catalyzed cyclization.
Scheme 67: Preparation of peroxyplakoric acid methyl ethers A and D.
Scheme 68: Hg(OAc)2 in 1,2-dioxane synthesis.
Scheme 69: Reaction of 1,4-diketones 242 with hydrogen peroxide.
Scheme 70: Inramolecular cyclization with oxetane-ring opening.
Scheme 71: Inramolecular cyclization with MsO fragment substitution.
Scheme 72: Synthesis of 1,2-dioxane 255a, a structurally similar compound to natural peroxyplakoric acids.
Scheme 73: Synthesis of 1,2-dioxanes based on the intramolecular cyclization of hydroperoxides containing C=C ...
Scheme 74: Use of BCIH in the intramolecular cyclization.
Scheme 75: Palladium-catalyzed cyclization of δ-unsaturated hydroperoxides 271a–e.
Scheme 76: Intramolecular cyclization of unsaturated peroxyacetals 273a–d.
Scheme 77: Allyltrimethylsilane in the synthesis of 1,2-dioxanes 276a–d.
Scheme 78: Intramolecular cyclization using the electrophilic center of the peroxycarbenium ion 279.
Scheme 79: Synthesis of bicyclic 1,2-dioxanes.
Scheme 80: Preparation of 1,2-dioxane 286.
Scheme 81: Di(tert-butyl)peroxalate-initiated radical cyclization of unsaturated hydroperoxide 287.
Scheme 82: Oxidation of 1,4-betaines 291a–d.
Scheme 83: Synthesis of aminoquinoline-containing 1,2-dioxane 294.
Scheme 84: Synthesis of the sulfonyl-containing 1,2-dioxane.
Scheme 85: Synthesis of the amido-containing 1,2-dioxane 301.
Scheme 86: Reaction of singlet oxygen with the 1,3-diene system 302.
Scheme 87: Synthesis of (+)-premnalane А and 8-epi-premnalane A.
Scheme 88: Synthesis of the diazo group containing 1,2-dioxenes 309a–e.
Figure 4: Plakortolide Е.
Scheme 89: Synthesis of 6-epiplakortolide Е.
Scheme 90: Application of Bu3SnH for the preparation of tetrahydrofuran-containing bicyclic peroxides 318a,b.
Scheme 91: Application of Bu3SnH for the preparation of lactone-containing bicyclic peroxides 320a–f.
Scheme 92: Dihydroxylation of the double bond in the 1,2-dioxene ring 321 with OsO4.
Scheme 93: Epoxidation of 1,2-dioxenes 324.
Scheme 94: Cyclopropanation of the double bond in endoperoxides 327.
Scheme 95: Preparation of pyridazine-containing bicyclic endoperoxides 334a–c.
Scheme 96: Synthesis of 1,2,4-trioxanes 337 by the hydroperoxidation of unsaturated alcohols 335 with 1O2 and ...
Scheme 97: Synthesis of sulfur-containing 1,2,4-trioxanes 339.
Scheme 98: BF3·Et2O-catalyzed synthesis of the 1,2,4-trioxanes 342a–g.
Scheme 99: Photooxidation of enol ethers or vinyl sulfides 343.
Scheme 100: Synthesis of tricyclic peroxide 346.
Scheme 101: Reaction of endoperoxides 348a,b derived from cyclohexadienes 347a,b with 1,4-cyclohexanedione.
Scheme 102: [4 + 2]-Cycloaddition of singlet oxygen to 2Н-pyrans 350.
Scheme 103: Synthesis of 1,2,4-trioxanes 354 using peroxysilylation stage.
Scheme 104: Epoxide-ring opening in 355 with H2O2 followed by the condensation of hydroxy hydroperoxides 356 wi...
Scheme 105: Peroxidation of unsaturated ketones 358 with the H2O2/CF3COOH/H2SO4 system.
Scheme 106: Synthesis of 1,2,4-trioxanes 362 through Et2NH-catalyzed intramolecular cyclization.
Scheme 107: Reduction of the double bond in tricyclic peroxides 363.
Scheme 108: Horner–Wadsworth–Emmons reaction in the presence of peroxide group.
Scheme 109: Reduction of ester group by LiBH4 in the presence of 1,2,4-trioxane moiety.
Scheme 110: Reductive amination of keto-containing 1,2,4-trioxane 370.
Scheme 111: Reductive amination of keto-containing 1,2,4-trioxane and a Fe-containing moiety.
Scheme 112: Acid-catalyzed reactions of Н2О2 with ketones and aldehydes 374.
Scheme 113: Cyclocondensation of carbonyl compounds 376a–d using Me3SiOOSiMe3/CF3SO3SiMe3.
Scheme 114: Peroxidation of 4-methylcyclohexanone (378).
Scheme 115: Synthesis of symmetrical tetraoxanes 382a,b from aldehydes 381a,b.
Scheme 116: Synthesis of unsymmetrical tetraoxanes using of MeReO3.
Scheme 117: Synthesis of symmetrical tetraoxanes using of MeReO3.
Scheme 118: Synthesis of symmetrical tetraoxanes using of MeReO3.
Scheme 119: MeReO3 in the synthesis of symmetrical tetraoxanes with the use of aldehydes.
Scheme 120: Preparation of unsymmmetrical 1,2,4,5-tetraoxanes with high antimalarial activity.
Scheme 121: Re2O7-Catalyzed synthesis of tetraoxanes 398.
Scheme 122: H2SO4-Catalyzed synthesis of steroidal tetraoxanes 401.
Scheme 123: HBF4-Catalyzed condensation of bishydroperoxide 402 with 1,4-cyclohexanedione.
Scheme 124: BF3·Et2O-Catalyzed reaction of gem-bishydroperoxides 404 with enol ethers 405 and acetals 406.
Scheme 125: HBF4-Catalyzed cyclocondensation of bishydroperoxide 410 with ketones.
Scheme 126: Synthesis of symmetrical and unsymmetrical tetraoxanes 413 from benzaldehydes 412.
Scheme 127: Synthesis of bridged 1,2,4,5-tetraoxanes 415a–l from β-diketones 414a–l and H2O2.
Scheme 128: Dimerization of zwitterions 417.
Scheme 129: Ozonolysis of verbenone 419.
Scheme 130: Ozonolysis of O-methyl oxime 424.
Scheme 131: Peroxidation of 1,1,1-trifluorododecan-2-one 426 with oxone.
Scheme 132: Intramolecular cyclization of dialdehyde 428 with H2O2.
Scheme 133: Tetraoxanes 433–435 as by-products in peroxidation of ketals 430–432.
Scheme 134: Transformation of triperoxide 436 in diperoxide 437.
Scheme 135: Preparation and structural modifications of tetraoxanes.
Scheme 136: Structural modifications of steroidal tetraoxanes.
Scheme 137: Synthesis of 1,2,4,5-tetraoxane 454 containing the fluorescent moiety.
Scheme 138: Synthesis of tetraoxane 458 (RKA182).
Beilstein J. Org. Chem. 2013, 9, 2476–2536, doi:10.3762/bjoc.9.287
Graphical Abstract
Scheme 1: Pd-catalyzed monofluoromethylation of pinacol phenylboronate [44].
Scheme 2: Cu-catalyzed monofluoromethylation with 2-PySO2CHFCOR followed by desulfonylation [49].
Scheme 3: Cu-catalyzed difluoromethylation with α-silyldifluoroacetates [57].
Figure 1: Mechanism of the Cu-catalyzed C–CHF2 bond formation of α,β-unsaturated carboxylic acids through dec...
Scheme 4: Fe-catalyzed decarboxylative difluoromethylation of cinnamic acids [62].
Scheme 5: Preliminary experiments for investigation of the mechanism of the C–H trifluoromethylation of N-ary...
Figure 2: Plausible catalytic cycle proposed by Z.-J. Shi et al. for the trifluoromethylation of acetanilides ...
Figure 3: Plausible catalytic cycle proposed by M. S. Sanford et al. for the perfluoroalkylation of simple ar...
Figure 4: Postulated reaction pathway for the Ag/Cu-catalyzed trifluoromethylation of aryl iodides by Z. Q. W...
Figure 5: Postulated reaction mechanism for Cu-catalyzed trifluoromethylation reaction using MTFA as trifluor...
Scheme 6: Formal Heck-type trifluoromethylation of vinyl(het)arenes by M. Sodeoka et al. [83].
Figure 6: Proposed catalytic cycle for the copper-catalyzed trifluoromethylation of (het)arenes in presence o...
Figure 7: Proposed catalytic cycle for the copper-catalyzed trifluoromethylation of N,N-disubstituted (hetero...
Figure 8: Proposed catalytic cycle by Y. Zhang and J. Wang et al. for the copper-catalyzed trifluoromethylati...
Figure 9: Mechanistic rationale for the trifluoromethylation of arenes in presence of Langlois’s reagent and ...
Scheme 7: Trifluoromethylation of 4-acetylpyridine with Langlois’s reagent by P. S. Baran et al. (* Stirring ...
Scheme 8: Catalytic copper-facilitated perfluorobutylation of benzene with C4F9I and benzoyl peroxide [90].
Figure 10: F.-L. Qing et al.’s proposed mechanism for the copper-catalyzed trifluoromethylation of (hetero)are...
Figure 11: Mechanism of the Cu-catalyzed/Ru-photocatalyzed trifluoromethylation and perfluoroalkylation of ary...
Figure 12: Proposed mechanism for the Cu-catalyzed trifluoromethylation of aryl- and vinyl boronic acids with ...
Figure 13: Possible mechanism for the Cu-catalyzed decarboxylative trifluoromethylation of cinnamic acids [62].
Scheme 9: Ruthenium-catalyzed perfluoroalkylation of alkenes and (hetero)arenes with perfluoroalkylsulfonyl c...
Figure 14: N. Kamigata et al.’s proposed mechanism for the Ru-catalyzed perfluoroalkylation of alkenes and (he...
Figure 15: Proposed mechanism for the Ru-catalyzed photoredox trifluoromethylation of (hetero)arenes with trif...
Figure 16: Late-stage trifluoromethylation of pharmaceutically relevant molecules with trifluoromethanesulfony...
Figure 17: Proposed mechanism for the trifluoromethylation of alkenes with trifluoromethyl iodide under Ru-bas...
Scheme 10: Formal perfluoroakylation of terminal alkenes by Ru-catalyzed cross-metathesis with perfluoroalkyle...
Figure 18: One-pot Ir-catalyzed borylation/Cu-catalyzed trifluoromethylation of complex small molecules by Q. ...
Figure 19: Mechanistic proposal for the Ni-catalyzed perfluoroalkylation of arenes and heteroarenes with perfl...
Scheme 11: Electrochemical Ni-catalyzed perfluoroalkylation of 2-phenylpyridine (Y. H. Budnikova et al.) [71].
Scheme 12: Fe(II)-catalyzed trifluoromethylation of arenes and heteroarenes with trifluoromethyl iodide (T. Ya...
Figure 20: Mechanistic proposal by T. Yamakawa et al. for the Fe(II)-catalyzed trifluoromethylation of arenes ...
Scheme 13: Ytterbium-catalyzed perfluoroalkylation of dihydropyran with perfluoroalkyl iodide (Y. Ding et al.) ...
Figure 21: Mechanistic proposal by A. Togni et al. for the rhenium-catalyzed trifluoromethylation of arenes an...
Figure 22: Mechanism of the Cu-catalyzed oxidative trifluoromethylthiolation of arylboronic acids with TMSCF3 ...
Scheme 14: Removal of the 8-aminoquinoline auxiliary [136].
Figure 23: Mechanism of the Cu-catalyzed trifluoromethylthiolation of C–H bonds with a trifluoromethanesulfony...
Beilstein J. Org. Chem. 2013, 9, 1757–1762, doi:10.3762/bjoc.9.203
Graphical Abstract
Figure 1: Structure of the tetrasaccharide repeating unit of the O-antigen of Escherichia coli O16.
Figure 2: Structure of the synthesized pentasaccharide and its synthetic intermediates.
Scheme 1: Reagents: (a) N-iodosuccinimide (NIS), TfOH, CH2Cl2, MS 4 Å, −30 °C, 1 h, then 0 °C, 1 h, 76%; (b) ...
Beilstein J. Org. Chem. 2013, 9, 1202–1209, doi:10.3762/bjoc.9.136
Graphical Abstract
Figure 1: Representative examples of carbazoles with hole-transport, host or luminescent properties.
Scheme 1: Synthetic access to N-arylated carbazoles.
Scheme 2: Proposed mechanistic motivation towards the formation of 3a.
Figure 2: FID chromatogram of the reaction mixture. Only the most intense peaks were structurally assigned. x...
Figure 3: Substrate scope. All reactions were performed using iodonium salt 1 (0.35 mmol), 1.2 equiv of prima...
Scheme 3: Synthesis of dibenzo[b,d]bromolium trifluoromethanesulfonate (6).
Scheme 4: Dibenzo[b,d]bromolium trifluoromethanesulfonate (6) and p-fluoroaniline (2f) to construct carbazole ...
Beilstein J. Org. Chem. 2013, 9, 877–890, doi:10.3762/bjoc.9.101
Graphical Abstract
Scheme 1: Typical reactions for photoinitiated cationic polymerization.
Scheme 2: Examples of previously investigated architectures.
Scheme 3: Investigated Co_Pys.
Scheme 4: Other chemical compounds.
Figure 1: UV–vis absorption spectra of the investigated compounds: (A) In acetonitrile for Py_1 and acetonitr...
Figure 2: HOMO–LUMO orbitals for Py_2, Py_3, Py_5, Py_6, Py_8, Py_11 and Py_12 involved in the π–π* transitio...
Figure 3: Fluorescence quenching of 1Py_3 by the phenacylbromide (PBr) in acetonitrile/toluene (50/50). Inser...
Scheme 5: Photochemical processes for the different Co_Pys.
Figure 4: ESR spectra obtained upon irradiation of (A) Py_3/Iod, (B) Py_3/PBr and (C) Py_3/EDB in tert-butylb...
Figure 5: ESR-spin trapping spectra of Py_9/Iod in tert-butylbenzene (storage at rt for 24 h); (a) experiment...
Figure 6: Photopolymerization profiles of EPOX upon Xe–Hg lamp irradiation (λ > 340 nm) under air for differe...
Figure 7: Photopolymerization profiles of EPOX upon a Xe–Hg lamp irradiation (λ > 340 nm) under air for diffe...
Figure 8: (A) Photopolymerization profiles of EPOX-Si upon a Xe–Hg lamp irradiation (λ > 340 nm) under air fo...
Figure 9: Photopolymerization profiles of TMPTA upon Xe–Hg lamp irradiation (λ > 340 nm) in laminate for diff...
Figure 10: Photolysis of (A) the Py_3/PBr couple, (B) the Py_3/Iod couple, and (C) the Py_3/MDEA couple; Xe–Hg...
Figure 11: Photolysis of (A) the Py_11/Iod and (B) the Py_11/Iod/NVK couple. Halogen lamp irradiation. In acet...
Scheme 6: The oxidative cycle.
Scheme 7: Oxidation versus reduction cycles.
Beilstein J. Org. Chem. 2012, 8, 2053–2059, doi:10.3762/bjoc.8.230
Graphical Abstract
Figure 1: Structure of the tetrasaccharide repeating unit of the cell-wall lipopolysaccharide of Escherichia ...
Figure 2: Structure of the synthesized tetrasaccharide 1 and its synthetic precursors.
Scheme 1: Synthesis of disaccharide derivative 8. Reagents and conditions: (a) benzyl bromide, NaOH, DMF, roo...
Scheme 2: Synthesis of disaccharide derivative 9. Reagents and conditions: (a) NIS, HClO4–SiO2, MS 4Å, CH2Cl2...
Scheme 3: Synthesis of target tetrasaccharide 1. Reagents and conditions: (a) NIS, HClO4–SiO2, CH2Cl2, −15 °C...
Beilstein J. Org. Chem. 2012, 8, 597–605, doi:10.3762/bjoc.8.66
Graphical Abstract
Scheme 1: Orthogonal strategy introduced by Ogawa et al.
Scheme 2: Determination of the AP activation pathways.
Scheme 3: AP building blocks in oligosaccharide synthesis.
Beilstein J. Org. Chem. 2011, 7, 1441–1448, doi:10.3762/bjoc.7.168
Graphical Abstract
Scheme 1: Hassner's synthesis of vinyl azides and a stable, nonexplosive analogue 5 of iodine azide (1).
Scheme 2: Preparation of polymer-bound bisazido iodate(I) 5 and polymer-bound 1,8-diaza-[5.4.0]bicyclo-7-unde...
Scheme 3: Two-step protocol for the preparation of vinyl azides 4a–e and 4g–i under flow conditions.
Scheme 4: Regeneration of functionalized polymers 5 and 8.
Scheme 5: Preparation of triazoles 12a–l by using inductively heated copper turnings as a packed-bed material...
Beilstein J. Org. Chem. 2011, 7, 1182–1188, doi:10.3762/bjoc.7.137
Graphical Abstract
Figure 1: Structure of the tetrasaccharide repeating unit of the O-antigen of Shigella boydii type 9.
Figure 2: Structure of the synthesized tetrasaccharide and its intermediates.
Scheme 1: Reagents: (a) acetic anhydride, sulfamic acid, 60 °C, 30 min, 91%; (b) Et3SiH, I2, 0–5 °C, 30 min, ...
Scheme 2: Reagents: (a) HClO4–SiO2, CH2Cl2, −15 °C, 1 h, 81%; (b) benzyl bromide, NaOH, n-Bu4NBr, THF, rt, 2 ...
Scheme 3: Reagents: (a) N-iodosuccinimide, HClO4–SiO2, −10 °C, 1 h, 82%; (b) 0.1 M CH3ONa, CH3OH, rt, 3 h; (c...
Beilstein J. Org. Chem. 2011, 7, 1108–1114, doi:10.3762/bjoc.7.127
Graphical Abstract
Scheme 1: Electrochemically generated N-acyliminium ions 1 and subsequent reactions.
Figure 1: Electrochemical microreactor.
Scheme 2: Electrolysis of furan.
Scheme 3: Kolbe electrolysis of phenylacetic acids 6 in flow.
Scheme 4: Synthesis of diaryliodonium salts 11 in flow.
Beilstein J. Org. Chem. 2011, 7, 847–859, doi:10.3762/bjoc.7.97
Graphical Abstract
Scheme 1: Mechanistic scenarios for alkyne activation.
Scheme 2: Synthesis of 3(2H)-furanones.
Scheme 3: Synthesis of furans.
Scheme 4: Formation of dihydrooxazoles.
Scheme 5: Variation on indole formation.
Scheme 6: Formation of naphthalenes.
Scheme 7: Formation of indenes.
Scheme 8: Iodocyclization of 3-silyloxy-1,5-enynes.
Scheme 9: 5-Endo cyclizations with concomitant nucleophilic trapping.
Scheme 10: Reactivity of 3-BocO-1,5-enynes.
Scheme 11: Intramolecular nucleophilic trapping.
Scheme 12: Approach to azaanthraquinones.
Scheme 13: Carbocyclizations with enol derivatives.
Scheme 14: Gold-catalyzed cyclization modes for 1,5-enynes.
Scheme 15: Iodine-induced cyclization of 1,5-enynes.
Scheme 16: Diverse reactivity of 1,6-enynes.
Scheme 17: Iodocyclization of 1,6-enynes.
Scheme 18: Cyclopropanation of alkenes with 1,6-enynes.
Scheme 19: Cyclopropanation of alkenes with 1,6-enynes.
Beilstein J. Org. Chem. 2011, 7, 59–74, doi:10.3762/bjoc.7.10
Graphical Abstract
Scheme 1: Synthesis of selective D3 receptor ligands.
Scheme 2: Synthesis of a novel 5-HT1B receptor antagonist.
Scheme 3: Synthesis of A-366833, a selective α4β2 neural nicotinic receptor agonist.
Scheme 4: A new route to oxcarbazepine.
Scheme 5: Synthesis of key intermediates for norepinephrine transporter (NET) inhibitors.
Scheme 6: N-Annulation yielding substituted indole for the synthesis of demethylasterriquinone A1.
Scheme 7: Palladium-catalysed double N-arylation contributing to the synthesis of murrazoline.
Scheme 8: Synthesis of vitamin E amines.
Scheme 9: Improved synthesis of martinellic acid.
Scheme 10: New tariquidar-derived ABCB1 inhibitors.
Scheme 11: β-Carbolin-1-ones as inhibitors of tumour cell proliferation.
Scheme 12: Copper-catalysed synthesis of promazine drugs.
Scheme 13: Palladium-catalysed multicomponent reaction for the synthesis of promazine drugs.
Scheme 14: Key intermediate for imatinib.
Scheme 15: Synthesis of an effective Chek1/KDR kinase inhibitor.
Scheme 16: Macrocyclization as final step of the synthesis of heat shock protein inhibitor.
Scheme 17: Synthesis of N-arylimidazoles.
Scheme 18: Synthesis of benzolactam V8.
Scheme 19: Synthesis of an intermediate for lotrafiban (SB-214857).
Scheme 20: Intermolecular effort towards lotrafiban.
Scheme 21: Synthesis of matrix metalloproteases (MMPs) inhibitor.
Scheme 22: Regioselective 9-N-arylation of purines.
Scheme 23: N-Arylation of adenine and cytosine.
Scheme 24: 9-N-Arylpurines as enterovirus inhibitors.
Scheme 25: Xanthine analogues as kinase inhibitors.
Scheme 26: Synthesis of dual PPARα/γ agonists.
Scheme 27: N-Aryltriazole ribonucleosides with anti-proliferative activity.
Beilstein J. Org. Chem. 2010, 6, 880–921, doi:10.3762/bjoc.6.88
Graphical Abstract
Figure 1: Examples of industrial fluorine-containing bio-active molecules.
Figure 2: CF3(S)- and CF3(O)-containing pharmacologically active compounds.
Figure 3: Hypotensive candidates with SRF and SO2RF groups – analogues of Losartan and Nifedipin.
Figure 4: The variety of the pharmacological activity of RFS-substituted compounds.
Figure 5: Recent examples of compounds containing RFS(O)n-groups [12-18].
Scheme 1: Fluorination of ArSCCl3 to corresponding ArSCF3 derivatives. For references see: a[38-43]; b[41,42]; c[43]; d[44]; e[38-43,45-47]; f[38-43,48,49]; g...
Scheme 2: Preparation of aryl pentafluoroethyl sulfides.
Scheme 3: Mild fluorination of the aryl SCF2Br derivatives.
Scheme 4: HF fluorinations of aryl α,α,β-trichloroisobutyl sulfide at various conditions.
Scheme 5: Monofluorination of α,α-dichloromethylene group.
Scheme 6: Electrophilic substitution of phenols with CF3SCl [69].
Scheme 7: Introduction of SCF3 groups into activated phenols [71-74].
Scheme 8: Preparation of tetrakis(SCF3)-4-methoxyphenol [72].
Scheme 9: The interactions of resorcinol and phloroglucinol derivatives with RFSCl.
Scheme 10: Reactions of anilines with CF3SCl.
Scheme 11: Trifluoromethylsulfanylation of anilines with electron-donating groups in the meta position [74].
Scheme 12: Reaction of benzene with CF3SCl/CF3SO3H [77].
Scheme 13: Reactions of trifluoromethyl sulfenyl chloride with aryl magnesium and -mercury substrates.
Scheme 14: Reactions of pyrroles with CF3SCl.
Scheme 15: Trifluoromethylsulfanylation of indole and indolizines.
Scheme 16: Reactions of N-methylpyrrole with CF3SCl [80,82].
Scheme 17: Reactions of furan, thiophene and selenophene with CF3SCl.
Scheme 18: Trifluoromethylsulfanylation of imidazole and thiazole derivatives [83].
Scheme 19: Trifluoromethylsulfanylation of pyridine requires initial hydride reduction.
Scheme 20: Introduction of additional RFS-groups into heterocyclic compounds in the presence of CF3SO3H.
Scheme 21: Introduction of additional RFS-groups into pyrroles [82,87].
Scheme 22: By-products in reactions of pyrroles with CF3SCl [82].
Scheme 23: Reaction of aromatic iodides with CuSCF3 [93,95].
Scheme 24: Reaction of aromatic iodides with RFZCu (Z = S, Se), RF = CF3, C6F5 [93,95,96].
Scheme 25: Side reactions during trifluoromethylsulfanylation of aromatic iodides with CF3SCu [98].
Scheme 26: Reactions with in situ generated CuSCF3.
Scheme 27: Perfluoroalkylthiolation of aryl iodides with bulky RFSCu [105].
Scheme 28: In situ formation and reaction of RFZCu with aryl iodides.
Figure 6: Examples of compounds obtained using in situ generated RFZCu methodology [94].
Scheme 29: Introduction of SCF3 group into aromatics via difluorocarbene.
Scheme 30: Tetrakis(dimethylamino)ethylene dication trifluoromethyl thiolate as a stable reagent for substitut...
Scheme 31: The use of CF2=S/CsF or (CF3S)2C=S/CsF for the introduction of CF3S groups into fluorinated heteroc...
Scheme 32: One-pot synthesis of ArSCF3 from ArX, CCl2=S and KF.
Scheme 33: Reaction of aromatics with CF3S− Kat+ [115].
Scheme 34: Reactions of activated aromatic chlorides with AgSCF3/KI.
Scheme 35: Comparative CuSCF3/KI and Hg(SCF3)2/KI reactions.
Scheme 36: Me3SnTeCF3 – a reagent for the introduction of the TeCF3 group.
Scheme 37: Sandmeyer reactions with CuSCF3.
Scheme 38: Reactions of perfluoroalkyl iodides with alkali and organolithium reagents.
Scheme 39: Perfluoroalkylation with preliminary breaking of the disulfide bond.
Scheme 40: Preparation of RFS-substituted anilines from dinitrodiphenyl disulfides.
Scheme 41: Photochemical trifluoromethylation of 2,4,6-trimercaptochlorobenzene [163].
Scheme 42: Putative process for the formation of B, C and D.
Scheme 43: Trifluoromethylation of 2-mercapto-4-hydroxy-6-trifluoromethylyrimidine [145].
Scheme 44: Deactivation of 2-mercapto-4-hydroxypyrimidines S-centered radicals.
Scheme 45: Perfluoroalkylation of thiolates with CF3Br under UV irradiation.
Scheme 46: Catalytic effect of methylviologen for RF• generation.
Scheme 47: SO2−• catalyzed trifluoromethylation.
Scheme 48: Electrochemical reduction of CF3Br in the presence of SO2 [199,200].
Scheme 49: Participation of SO2 in the oxidation of ArSCF3−•.
Scheme 50: Electron transfer cascade involving SO2 and MV.
Scheme 51: Four stages of the SRN1 mechanism for thiol perfluoroalkylation.
Scheme 52: A double role of MV in the catalysis of RFI reactions with aryl thiols.
Scheme 53: Photochemical reaction of pentafluoroiodobenzene with trifluoromethyl disulfide.
Scheme 54: N- Trifluoromethyl-N-nitrosobenzene sulfonamide – a source of CF3• radicals [212,213].
Scheme 55: Radical trifluoromethylation of organic disulfides with ArSO2N=NCF3.
Scheme 56: Barton’s S-perfluoroalkylation reactions [216].
Scheme 57: Decarboxylation of thiohydroxamic esters in the presence of C6F13I.
Scheme 58: Reactions of thioesters of trifluoroacetic and trifluoromethanesulfonic acids in the presence of ar...
Scheme 59: Perfluoroalkylation of polychloropyridine thiols with xenon perfluorocarboxylates or XeF2 [222,223].
Scheme 60: Interaction of Xe(OCORF)2 with nitroaryl disulfide [227].
Scheme 61: Bi(CF3)3/Cu(OCOCH3)2 trifluoromethylation of thiophenolate [230].
Scheme 62: Reaction of fluorinated carbanions with aryl sulfenyl chlorides.
Scheme 63: Reaction of methyl perfluoromethacrylate with PhSCl in the presence of fluoride.
Scheme 64: Reactions of ArSCN with potassium and magnesium perfluorocarbanions [237].
Scheme 65: Reactions of RFI with TDAE and organic disulfides [239,240].
Scheme 66: Decarboxylation of perfluorocarboxylates in the presence of disulfides [245].
Scheme 67: Organization of a stable form of “CF3−” anion in the DMF.
Scheme 68: Silylated amines in the presence of fluoride can deprotonate fluoroform for reaction with disulfide...
Figure 7: Other examples of aminomethanols [264].
Scheme 69: Trifluoromethylation of diphenyl disulfide with PhSO2CF3/t-BuOK.
Scheme 70: Amides of trifluoromethane sulfinic acid are sources of CF3− anion.
Scheme 71: Trifluoromethylation of various thiols using “hyper-valent” iodine (III) reagent [279].
Scheme 72: Trifluoromethylation of p-nitrothiophenolate with diaryl CF3 sulfonium salts [280].
Scheme 73: Trifluoromethyl transfer from dibenzo (CF3)S-, (CF3)Se- and (CF3)Te-phenium salts to thiolates [283].
Scheme 74: Multi-stage paths for synthesis of dibenzo-CF3-thiophenium salts [61].
Beilstein J. Org. Chem. 2010, 6, No. 65, doi:10.3762/bjoc.6.65
Graphical Abstract
Scheme 1: Preparation of the first electrophilic trifluoromethylating reagent and its reaction with a thiophe...
Scheme 2: Synthetic routes to S-CF3 and Se-CF3 dibenzochalcogenium salts.
Scheme 3: Synthesis of (trifluoromethyl)dibenzotellurophenium salts.
Scheme 4: Nitration of (trifluoromethyl)dibenzochalcogenium salts.
Scheme 5: Synthesis of a sulphonium salt with a bridged oxygen.
Scheme 6: Reactivity of (trifluoromethyl)dibenzochalcogenium salts.
Scheme 7: Pd(II)-Catalyzed ortho-trifluoromethylation of heterocycle-substituted arenes by Umemoto’s reagents....
Scheme 8: Mild electrophilic trifluoromethylation of β-ketoesters and silyl enol ethers.
Scheme 9: Enantioselective electrophilic trifluoromethylation of β-ketoesters.
Scheme 10: Preparation of water-soluble S-(trifluoromethyl)dibenzothiophenium salts.
Scheme 11: Method for large-scale preparation of S-(trifluoromethyl)dibenzothiophenium salts.
Scheme 12: Triflic acid catalyzed synthesis of 5-(trifluoromethyl)thiophenium salts.
Scheme 13: Trifluoromethylation of β-ketoesters and dicyanoalkylidenes by S-(trifluoromethyl)benzothiophenium ...
Scheme 14: Synthesis of chiral S-(trifluoromethyl)benzothiophenium salt 18 and attempt of enantioselective tri...
Scheme 15: Synthesis of O-(trifluoromethyl)dibenzofuranium salts.
Scheme 16: Photochemical O- and N-trifluoromethylation by 20b.
Scheme 17: Thermal O-trifluoromethylation of phenol by diazonium salt 19a. Effect of the counteranion.
Scheme 18: Thermal O- and N-trifluoromethylations.
Scheme 19: Method of preparation of S-(trifluoromethyl)diphenylsulfonium triflates.
Scheme 20: Reactivity of some S-(trifluoromethyl)diarylsulfonium triflates.
Scheme 21: One-pot synthesis of S-(trifluoromethyl)diarylsulfonium triflates.
Scheme 22: One-pot synthesis of Umemoto’s type reagents.
Scheme 23: Preparation of sulfonium salts by transformation of CF3− into CF3+.
Scheme 24: Selected reactions with the new Yagupolskii reagents.
Scheme 25: Synthesis of heteroaryl-substituted sulfonium salts.
Scheme 26: First neutral S-CF3 reagents.
Scheme 27: Synthesis of Togni reagents. aYield for the two-step procedure.
Scheme 28: Trifluoromethylation of C-nucleophiles with 37.
Scheme 29: Selected examples of trifluoromethylation of S-nucleophiles with 37.
Scheme 30: Selected examples of trifluoromethylation of P-nucleophiles with 35 and 37.
Scheme 31: Trifluoromethylation of 2,4,6-trimethylphenol with 35.
Scheme 32: Examples of O-trifluoromethylation of alcohols with 35 in the presence of 1 equiv of Zn(NTf2)2.
Scheme 33: Formation of trifluoromethyl sulfonates from sulfonic acids and 35.
Scheme 34: Organocatalytic α-trifluoromethylation of aldehydes with 37.
Scheme 35: Synthesis of reagent 42 and mechanism of trifluoromethylation.
Scheme 36: Trifluoromethylation of β-ketoesters and dicyanoalkylidenes with 42.