Search results

Search for "tetrazole" in Full Text gives 81 result(s) in Beilstein Journal of Organic Chemistry.

Unusual behavior in the reactivity of 5-substituted-1H-tetrazoles in a resistively heated microreactor

  • Bernhard Gutmann,
  • Toma N. Glasnov,
  • Tahseen Razzaq,
  • Walter Goessler,
  • Dominique M. Roberge and
  • C. Oliver Kappe

Beilstein J. Org. Chem. 2011, 7, 503–517, doi:10.3762/bjoc.7.59

Graphical Abstract
  • Chemistry, Karl-Franzens-University Graz, Universitätsplatz 1, A-8010 Graz, Austria Continuous Flow/Microreactor Technologies, Lonza AG, CH-3930 Visp, Switzerland 10.3762/bjoc.7.59 Abstract The decomposition of 5-benzhydryl-1H-tetrazole in an N-methyl-2-pyrrolidone/acetic acid/water mixture was
  • investigated under a variety of high-temperature reaction conditions. Employing a sealed Pyrex glass vial and batch microwave conditions at 240 °C, the tetrazole is comparatively stable and complete decomposition to diphenylmethane requires more than 8 h. Similar kinetic data were obtained in conductively
  • heated flow devices with either stainless steel or Hastelloy coils in the same temperature region. In contrast, in a flow instrument that utilizes direct electric resistance heating of the reactor coil, tetrazole decomposition was dramatically accelerated with rate constants increased by two orders of
PDF
Album
Supp Info
Full Research Paper
Published 21 Apr 2011

An overview of the key routes to the best selling 5-membered ring heterocyclic pharmaceuticals

  • Marcus Baumann,
  • Ian R. Baxendale,
  • Steven V. Ley and
  • Nikzad Nikbin

Beilstein J. Org. Chem. 2011, 7, 442–495, doi:10.3762/bjoc.7.57

Graphical Abstract
  • suffer from poor absorption and low bioavailability. At this stage a classical bioisostere exchange, i.e., replacing a carboxylic acid group with a tetrazole ring, was performed which resulted in increased lipophilicity [48] and the development of the orally active losartan. In the absence of a crystal
  • and dichloromethane selectively provides tertiary alcohol 183. In subsequent steps this imidazole is alkylated with the tetrazole containing biphenyl appendage, followed by ester hydrolysis and alkylation of the resulting carboxylate with 4-(chloromethyl)-5-methyl-2-oxo-1,3-dioxole to yield olmesartan
  • regioselectivity of the imidazole formation. The benzimidazole ring is then assembled by treating this diamine with tetraethyl orthocarbonate under Lewis acid conditions. The synthesis is concluded by installation of the tetrazole ring and acetal side chain, the latter is cleaved under physiological conditions
PDF
Album
Review
Published 18 Apr 2011

RAFT polymers for protein recognition

  • Alan F. Tominey,
  • Julia Liese,
  • Sun Wei,
  • Klaus Kowski,
  • Thomas Schrader and
  • Arno Kraft

Beilstein J. Org. Chem. 2010, 6, No. 66, doi:10.3762/bjoc.6.66

Graphical Abstract
  • slope of the binding curve. Graphical illustration of the potential binding mode on hemoglobin tetramer (represented as electrostatic potential surface, lysines = blue). The RAFT copolymer T20CH15 (tetrazole rings = red) undergoes an extensive induced fit procedure on the protein surface maximizing
PDF
Album
Supp Info
Full Research Paper
Published 17 Jun 2010

A short and efficient synthesis of valsartan via a Negishi reaction

  • Samir Ghosh,
  • A. Sanjeev Kumar and
  • G. N. Mehta

Beilstein J. Org. Chem. 2010, 6, No. 27, doi:10.3762/bjoc.6.27

Graphical Abstract
  • -tetrazole (6) and its Negishi coupling with aryl bromide 5 are the key steps of the synthesis. This method overcomes many of the drawbacks associated with previously reported syntheses. Keywords: antihypertensive therapy; aryl bromide; Negishi coupling; tetrazole; valsartan; Introduction Valsartan (Figure
  • important goal. In this paper, we report a new, concise and efficient synthesis of valsartan via Negishi coupling. Results and Discussion From a retro-synthetic analysis (Scheme 1), compound 8 could be constructed via Negishi coupling from aryl bromide 5 and 5-phenyl-1-trityl-1H-tetrazole (6), which in turn
  • -pentanoyl-L-valinate (5) [9] in 70% yield. Ortho-metalation of 5-phenyl-1-trityl-1H-tetrazole (6) [10] with n-butyllithium at 25 °C followed by treatment with zinc chloride at −20 °C gave the desired organozinc chloride compound. Coupling of the latter with aryl bromide 5 in presence of a catalytic amount
PDF
Album
Full Research Paper
Published 18 Mar 2010

Synthetic incorporation of Nile Blue into DNA using 2′-deoxyriboside substitutes: Representative comparison of (R)- and (S)-aminopropanediol as an acyclic linker

  • Daniel Lachmann,
  • Sina Berndl,
  • Otto S. Wolfbeis and
  • Hans-Achim Wagenknecht

Beilstein J. Org. Chem. 2010, 6, No. 13, doi:10.3762/bjoc.6.13

Graphical Abstract
  • modified with the acyclic linked acetylene was performed using a modified protocol. Activator solution (0.45 M tetrazole in acetonitrile) was pumped together with the building block (0.15 M in acetonitrile) through the CPG vial. The coupling time was extended to 61 min with an intervening step after 30.8
PDF
Album
Full Research Paper
Published 09 Feb 2010

Asymmetric reactions in continuous flow

  • Xiao Yin Mak,
  • Paola Laurino and
  • Peter H. Seeberger

Beilstein J. Org. Chem. 2009, 5, No. 19, doi:10.3762/bjoc.5.19

Graphical Abstract
  • in the near future. Enantioselective addition of trimethylsilyl cyanide to benzaldehyde. Asymmetric catalytic hydrogenation in a falling-film microreactor. Aldol reaction catalyzed by 5-(pyrrolidine-2-yl)tetrazole. Enantioselective addition of diethylzinc to aryl aldehydes. Glyoxylate-ene reaction in
PDF
Album
Review
Published 29 Apr 2009
Other Beilstein-Institut Open Science Activities