Search results

Search for "Lewis acid" in Full Text gives 484 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Electrochemical Friedel–Crafts-type amidomethylation of arenes by a novel electrochemical oxidation system using a quasi-divided cell and trialkylammonium tetrafluoroborate

  • Hisanori Senboku,
  • Mizuki Hayama and
  • Hidetoshi Matsuno

Beilstein J. Org. Chem. 2022, 18, 1040–1046, doi:10.3762/bjoc.18.105

Graphical Abstract
  • : electrochemical oxidation of amides/carbamates yielding α-methoxylated amides/carbamates (Shono oxidation, path c in Scheme 1) followed by the reaction of the isolated α-methoxylated amides/carbamates with arenes in the presence of a Lewis acid catalyst (path e in Scheme 1) [16]. Although the use of CH2Cl2 as a
PDF
Album
Supp Info
Letter
Published 18 Aug 2022

Post-synthesis from Lewis acid–base interaction: an alternative way to generate light and harvest triplet excitons

  • Hengjia Liu and
  • Guohua Xie

Beilstein J. Org. Chem. 2022, 18, 825–836, doi:10.3762/bjoc.18.83

Graphical Abstract
  • fluorescent materials containing Lewis basic nitrogen heterocycles are more likely to provide the feasible band gap modulation. The essence of such phenomenon originates from Lewis acid–base coordination and adducts, which highly depends on the electron-accepting property of the Lewis acids. This
  • intermolecular mechanism, considered as post-synthesis of new luminescent compounds offers promising applications in sensing and electroluminescence by manipulating the frontier molecular orbital energy levels of organic conjugated materials, simply based on Lewis acid–base chemistry. Keywords: excitons
  • ; fluorescence; Lewis acid; Lewis base; post-synthesis; Introduction Organic light emitting diodes (OLEDs) show great potential to dominate the next generation of flat-panel displays and efficient light sources attributed to the advantages of self-illumination, high efficiency, wide color gamut, and flexibility
PDF
Album
Review
Published 12 Jul 2022

Copper-catalyzed multicomponent reactions for the efficient synthesis of diverse spirotetrahydrocarbazoles

  • Shao-Cong Zhan,
  • Ren-Jie Fang,
  • Jing Sun and
  • Chao-Guo Yan

Beilstein J. Org. Chem. 2022, 18, 796–808, doi:10.3762/bjoc.18.80

Graphical Abstract
  • different kinds of aromatic aldehydes and 5-arylidene-1,3-dimethylbarbituric acids. 5-Arylidene-1,3-dimethylbarbituric acids could be easily generated through Knoevenagel condensation of aromatic aldehydes and 1,3-dimethylbarbituric acid under the catalysis of Lewis acid. We envisioned whether the desired
  • protocol by Lewis acid CuSO4 catalyzed reaction. Based on the above experimental results and the previously works [75][76][77], a plausible reaction pathway is illustrated in Scheme 7. At first, 2-methylindole reacts with aromatic aldehydes in the presence of the catalyst CuSO4 to generate the intermediate
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2022

Synthesis of odorants in flow and their applications in perfumery

  • Merlin Kleoff,
  • Paul Kiler and
  • Philipp Heretsch

Beilstein J. Org. Chem. 2022, 18, 754–768, doi:10.3762/bjoc.18.76

Graphical Abstract
  • SAC-13, alkylation of m-cresol with isopropanol proceeds via a Friedel–Crafts-type mechanism in much lower selectivity. In contrast, the authors proposed that employing γ-Al2O3 as Lewis acid catalyst, reaction of 39 and isopropanol leads to isopropyl ether 40. This intermediate undergoes a Fries-type
PDF
Album
Review
Published 27 Jun 2022

BINOL as a chiral element in mechanically interlocked molecules

  • Matthias Krajnc and
  • Jochen Niemeyer

Beilstein J. Org. Chem. 2022, 18, 508–523, doi:10.3762/bjoc.18.53

Graphical Abstract
  • for the non-interlocked mixture, see Figure 15). DFT calculations showed that the reaction takes place by cooperative action of the Li phosphate macrocycle and the amine thread, enabled by the mechanical bond. The Li phosphate acts as a Lewis acid to activate the malonic acid diethyl ester, which is
PDF
Album
Review
Published 06 May 2022

A Se···O bonding catalysis approach to the synthesis of calix[4]pyrroles

  • Qingzhe Tong,
  • Zhiguo Zhao and
  • Yao Wang

Beilstein J. Org. Chem. 2022, 18, 325–330, doi:10.3762/bjoc.18.36

Graphical Abstract
  • , several synthetic methods to access these compounds have been reported [54][55]. The classical approaches to synthesis of calix[4]pyrrole derivatives mainly involved a stepwise synthesis and Lewis acid as well as Brønsted acid catalysis [54][55]. Notably, a noncovalent catalysis approach to accessing
PDF
Album
Supp Info
Letter
Published 18 Mar 2022

Recent developments and trends in the iron- and cobalt-catalyzed Sonogashira reactions

  • Surendran Amrutha,
  • Sankaran Radhika and
  • Gopinathan Anilkumar

Beilstein J. Org. Chem. 2022, 18, 262–285, doi:10.3762/bjoc.18.31

Graphical Abstract
  • of the alkyl halide and C–H activation can be increased by the presence of active Lewis acid sites on the iron(III) nanoparticles. The scope for this catalytic system can be figured out by the presence of high temperature, high ligand concentration and activated ligands. Chen and co-workers
PDF
Album
Review
Published 03 Mar 2022

1,2-Naphthoquinone-4-sulfonic acid salts in organic synthesis

  • Ruan Carlos B. Ribeiro,
  • Patricia G. Ferreira,
  • Amanda de A. Borges,
  • Luana da S. M. Forezi,
  • Fernando de Carvalho da Silva and
  • Vitor F. Ferreira

Beilstein J. Org. Chem. 2022, 18, 53–69, doi:10.3762/bjoc.18.5

Graphical Abstract
  • reactions, and pericyclic reactions. Yoshida and co-workers [100] demonstrated that some metal ions are capable of activating aromatic compounds by chelation and promoting nucleophilic additions. For instance, 1-aminoanthraquinone quickly reacts with butylamine under the influence of Lewis acid catalysts to
PDF
Album
Review
Published 05 Jan 2022

Iron-catalyzed domino coupling reactions of π-systems

  • Austin Pounder and
  • William Tam

Beilstein J. Org. Chem. 2021, 17, 2848–2893, doi:10.3762/bjoc.17.196

Graphical Abstract
  • oxidative addition, transmetallation, and reductive elimination processes. On the other hand, iron may act as a Lewis acid, activating carbon–carbon multiple bonds via π-binding or heteroatoms via σ-complexes. This can either generate the organoiron complex after nucleophilic attack or produce a carbocation
PDF
Album
Review
Published 07 Dec 2021

Me3Al-mediated domino nucleophilic addition/intramolecular cyclisation of 2-(2-oxo-2-phenylethyl)benzonitriles with amines; a convenient approach for the synthesis of substituted 1-aminoisoquinolines

  • Krishna M. S. Adusumalli,
  • Lakshmi N. S. Konidena,
  • Hima B. Gandham,
  • Krishnaiah Kumari,
  • Krishna R. Valluru,
  • Satya K. R. Nidasanametla,
  • Venkateswara R. Battula and
  • Hari K. Namballa

Beilstein J. Org. Chem. 2021, 17, 2765–2772, doi:10.3762/bjoc.17.186

Graphical Abstract
  • (Table 1, entry 4). Moreover, TMS-OTf was also found to be not much effective as MeAl3 leading to generation of the desired product in comparably lesser yields than Me3Al (Table 1, entry 5). After identifying the suitable Lewis acid for this transformation, we next moved to optimize other reaction
PDF
Album
Supp Info
Letter
Published 16 Nov 2021

Synthetic strategies toward 1,3-oxathiolane nucleoside analogues

  • Umesh P. Aher,
  • Dhananjai Srivastava,
  • Girij P. Singh and
  • Jayashree B. S

Beilstein J. Org. Chem. 2021, 17, 2680–2715, doi:10.3762/bjoc.17.182

Graphical Abstract
  • ) catalyst to obtain nucleoside derivative 79a, followed by deprotection using methanolic ammonia (Scheme 27). Cousins et al. [49] carried out the coupling of enantiomerically enriched oxathiolane propionate 44 with silylated cytosine in the presence of the Lewis acid trimethylsilyl iodide (TMSI), which gave
  • . [40] described coupling of crude 1,3-oxathiolane precursor 20 with silylated acetylcytosine utilizing TMSOTf as a Lewis acid, which gave a mixture of α- and β-anomers (1:2 ratio) of 81 (Scheme 30). The mixture of anomers was further separated by silica gel column chromatography. (+)-BCH-189 (1a) and
  • -glycosylation of the enantiomerically pure 5-acetoxyoxathiolane 35a with presilylated cytosine as the key convergent step. This N-glycosylation reaction required the Lewis acid TMSI in a significant quantity to produce the desired cytidine 1 (Scheme 37). As shown in a plausible mechanism in Scheme 37, it is
PDF
Album
Review
Published 04 Nov 2021

AlBr3-Promoted stereoselective anti-hydroarylation of the acetylene bond in 3-arylpropynenitriles by electron-rich arenes: synthesis of 3,3-diarylpropenenitriles

  • Yelizaveta Gorbunova,
  • Dmitry S. Ryabukhin and
  • Aleksander V. Vasilyev

Beilstein J. Org. Chem. 2021, 17, 2663–2667, doi:10.3762/bjoc.17.180

Graphical Abstract
  • ]. Recently, we have shown that reactions of 3-arylpropenenitriles (cinnamonitriles, ArCH=CHCN) with arenes (Ar′H) under the superelectrophilic activation by the Brønsted superacid CF3SO3H (TfOH, triflic acid) or the strong Lewis acid AlBr3 result in the formation of 3,3-diarylpropanenitriles (Ar(Ar′)CHCH2CN
  • 2m correspondingly were obtained; other regioisomers were not isolated in amounts that were high enough for their identification. This transformation was also tested with another strong Lewis acid, aluminum chloride (AlCl3), for the reaction of nitrile 1a with benzene. However, in this case, mainly
PDF
Album
Supp Info
Full Research Paper
Published 01 Nov 2021

Ligand-dependent stereoselective Suzuki–Miyaura cross-coupling reactions of β-enamido triflates

  • Tomáš Chvojka,
  • Athanasios Markos,
  • Svatava Voltrová,
  • Radek Pohl and
  • Petr Beier

Beilstein J. Org. Chem. 2021, 17, 2657–2662, doi:10.3762/bjoc.17.179

Graphical Abstract
  • isomerization of N-allyl amides [20], but still possess drawbacks, especially for stereoselective synthesis of tri- and tetrasubstituted enamides. Recently, we have reported a triflic acid-mediated reaction of N-fluoroalkyl-1,2,3-triazoles leading to (Z)-β-enamido triflates [21] and Lewis acid-mediated reaction
PDF
Album
Supp Info
Letter
Published 29 Oct 2021

Synthesis of new bile acid-fused tetrazoles using the Schmidt reaction

  • Dušan Đ. Škorić,
  • Olivera R. Klisurić,
  • Dimitar S. Jakimov,
  • Marija N. Sakač and
  • János J. Csanádi

Beilstein J. Org. Chem. 2021, 17, 2611–2620, doi:10.3762/bjoc.17.174

Graphical Abstract
  • noticeably, while the yield was preserved. Ketone 3 and enone 4 were used for the optimization of reaction conditions. Firstly, the ketone 3 was reacted with hydrazoic acid in the presence of boron trifluoride etherate as a Lewis acid (Table 1, entry 1). The desired tetrazole 13 was obtained after
  • trifluoromethanesulfonate (TMSOTf) is superior to BF3⋅OEt2 as a catalyst in both dichloromethane (DCM) and acetonitrile (ACN), while ACN appears to be the better choice as solvent. A particularly good yield was obtained with TMSOTf in ACN. Also, it is evident that an increase in the amount of TMSN3 and Lewis acid did not
  • provide any significant change in yield. Myers and co-workers described BF2OTf⋅OEt2 as a powerful Lewis acid formed in situ from BF3⋅OEt2 and TMSOTf, which was especially efficient in ACN [45]. This prompted us to investigate the application of BF2OTf⋅OEt2 in our synthesis (Table 1, entries 9–11). As we
PDF
Album
Supp Info
Full Research Paper
Published 20 Oct 2021

α-Ketol and α-iminol rearrangements in synthetic organic and biosynthetic reactions

  • Scott Benz and
  • Andrew S. Murkin

Beilstein J. Org. Chem. 2021, 17, 2570–2584, doi:10.3762/bjoc.17.172

Graphical Abstract
  • silyl ethers. Ooi et al. utilized an axially chiral organoaluminum Lewis acid catalyst (18) to convert a series of α,α-dialkyl-α-siloxyaldehydes 16 to α-siloxyketones 17 in high yields and >74% ee (Figure 5) [7]. This reaction is noteworthy for its tolerance of silyl protecting groups, which are
  • base or Lewis acid, the possibility exists to couple the rearrangement to other compatible reactions without any intervention. Such tandem reactions are attractive synthetic “tricks” that can allow for complex modifications with efficiency and often high selectivity. This short section introduces this
  • catalyzed by Al(III) or Sc(III) liganded by 11. Ligand 11: for 9, m = 1 and Ar = 2,6-iPr2C6H3; for 12, m = 1 and Ar = 2,6-Me2C6H3; and for 14, m = 0 and Ar = 2,4,6-iPr3C6H2. Asymmetric rearrangement of α,α-dialkyl-α-siloxyaldehydes 16 to α-siloxyketones 17 catalyzed by chiral organoaluminum Lewis acid 18
PDF
Album
Review
Published 15 Oct 2021

Recent advances in the tandem annulation of 1,3-enynes to functionalized pyridine and pyrrole derivatives

  • Yi Liu,
  • Puying Luo,
  • Yang Fu,
  • Tianxin Hao,
  • Xuan Liu,
  • Qiuping Ding and
  • Yiyuan Peng

Beilstein J. Org. Chem. 2021, 17, 2462–2476, doi:10.3762/bjoc.17.163

Graphical Abstract
  • functionalized pyridines and pyrroles. Review Synthesis of pyridines via tandem annulation of 1,3-enynes In 2015, Reddy and co-workers reported the synthesis of substituted pyridines via Lewis acid-mediated aza-annulation of 2-en-4-ynyl azides 1 (Scheme 1) [49]. They discovered that Ag-mediated intramolecular
  • standard conditions. The proposed catalytic cycle included aza-Michael addition of arylamines, Lewis acid copper(II)-catalyzed intramolecular 5-endo-dig cyclization, protonation, and oxidation to provide the final products, tetrasubstituted pyrroles 39. The introduction of a trifluoromethyl group into
  • electrophiles or Lewis acid catalysts to form pyridines and pyrroles. Series of iodinated, aminated, selenylated, sulfenylated, esterified, and hydroxylated pyridine derivatives have been prepared based on 1,3-enynes. In addition, we also reviewed the tandem cyclization of 1,3-enynes to realize various
PDF
Album
Review
Published 22 Sep 2021

Strategies for the synthesis of brevipolides

  • Yudhi D. Kurniawan and
  • A'liyatur Rosyidah

Beilstein J. Org. Chem. 2021, 17, 2399–2416, doi:10.3762/bjoc.17.157

Graphical Abstract
  • prospective possibility to obtain ent-21 from precursor 20 by utilizing an antipode ligand in a Noyori reduction. As the continuation, intermediate 40 was coupled with (E)-p-methoxycinnamic acid (17) under Steglich conditions and treated with a Lewis acid to remove the MOM protection giving ester 41
PDF
Album
Review
Published 14 Sep 2021

A novel methodology for the efficient synthesis of 3-monohalooxindoles by acidolysis of 3-phosphate-substituted oxindoles with haloid acids

  • Li Liu,
  • Yue Li,
  • Tiao Huang,
  • Dulin Kong and
  • Mingshu Wu

Beilstein J. Org. Chem. 2021, 17, 2321–2328, doi:10.3762/bjoc.17.150

Graphical Abstract
  • (Table 1, entry 15). Prolonging the reaction time to 8 h did not improve the yield (Table 1, entry 15), whereas shortening the reaction time to 5 h reduced the yield (Table 1, entry 16), and thus revealing 6 h to be best reaction time. Finally, the effect of Lewis acid catalysts, such as ZnCl2, FeCl3
PDF
Album
Supp Info
Full Research Paper
Published 07 Sep 2021

Halides as versatile anions in asymmetric anion-binding organocatalysis

  • Lukas Schifferer,
  • Martin Stinglhamer,
  • Kirandeep Kaur and
  • Olga García Macheño

Beilstein J. Org. Chem. 2021, 17, 2270–2286, doi:10.3762/bjoc.17.145

Graphical Abstract
  • existence of two competing Brønsted acid and Lewis acid mechanistic pathways leading to the same product with high enantioselectivity was then uncovered. Jacobsen et al. reasoned that the key for this highly selective transformation lies in attractive cation–π and cation–dipole secondary interactions
PDF
Album
Review
Published 01 Sep 2021

Photoredox catalysis in nickel-catalyzed C–H functionalization

  • Lusina Mantry,
  • Rajaram Maayuri,
  • Vikash Kumar and
  • Parthasarathy Gandeepan

Beilstein J. Org. Chem. 2021, 17, 2209–2259, doi:10.3762/bjoc.17.143

Graphical Abstract
  • catalysts (Scheme 11) [63]. Here, the use of a zinc-based Lewis acid (LA) was found to activate α-hydroxy C‒H bonds by forming alkoxide (O‒LA) and suppressing the C‒O bond formation by inhibiting the formation of a nickel alkoxide species. The authors also claimed that the use of the zinc-based LA also
PDF
Album
Review
Published 31 Aug 2021

Transition-metal-free intramolecular Friedel–Crafts reaction by alkene activation: A method for the synthesis of some novel xanthene derivatives

  • Tülay Yıldız,
  • İrem Baştaş and
  • Hatice Başpınar Küçük

Beilstein J. Org. Chem. 2021, 17, 2203–2208, doi:10.3762/bjoc.17.142

Graphical Abstract
  • intramolecular coupling of arynes by aldehydes or phenols [21][22][23][24], and Lewis acid-catalyzed cyclization of salicylaldehydes and cyclohexenones or tetralones [25]. Some other new and prominent synthesis methods of xanthenes are the tandem arylation/Friedel–Crafts reaction of o-hydroxy bisbenzylic
  • method using π-activated alcohols has frequently been used for xanthene synthesis. Some of these methods are the stereoselective synthesis of 9-vinyl-substituted unsymmetrical xanthenes and thioxanthenes by intramolecular FCA reaction [39], Lewis acid-catalyzed intramolecular FCA [40], and the synthesis
PDF
Album
Supp Info
Full Research Paper
Published 30 Aug 2021

Facile and innovative catalytic protocol for intramolecular Friedel–Crafts cyclization of Morita–Baylis–Hillman adducts: Synergistic combination of chiral (salen)chromium(III)/BF3·OEt2 catalysis

  • Karthikeyan Soundararajan,
  • Helen Ratna Monica Jeyarajan,
  • Raju Subimol Kamarajapurathu and
  • Karthik Krishna Kumar Ayyanoth

Beilstein J. Org. Chem. 2021, 17, 2186–2193, doi:10.3762/bjoc.17.140

Graphical Abstract
  • -carboxylates [9], indenes [10][11][12][13] and indanones [14]. However, most of the reported Friedel–Crafts reactions utilize either strong Lewis acid catalysts or severe reaction conditions resulting in low yield, unwanted byproducts and tedious workup methodologies [15][16]. Therefore, developing an
  • convinced us to explore them as suitable chiral Lewis acid catalysts for the Friedel–Crafts cyclization of MBH adducts. Mononuclear(salen) complexes of aluminium, chromium, manganese and cobalt were chosen and screened for the current investigation. Results and Discussion To evaluate the scope of the
  • co-catalyst. Though all metal–salen complexes catalysed the reaction (Table 1, entries 1–4), but the [Cr(III)salenCl]/BF3·OEt2 combination promoted the cyclization effectively (45%, Table 1, entry 4). Regardless of Lewis acid character, BF3·OEt2 provides a number of undesired byproducts in absence of
PDF
Album
Supp Info
Letter
Published 26 Aug 2021

Catalyzed and uncatalyzed procedures for the syntheses of isomeric covalent multi-indolyl hetero non-metallides: an account

  • Ranadeep Talukdar

Beilstein J. Org. Chem. 2021, 17, 2102–2122, doi:10.3762/bjoc.17.137

Graphical Abstract
  • synthesized the similar compound 40, using a catalytic Lewis acid Zn(NTf2)2 and stoichiometric Lewis base γ-picoline combination in n-butyronitrile as solvent (Scheme 7c) [61]. This electron-donating solvent and toluene in the former reaction acted as stabilizers to the electron-deficient silicon species in
  • the similar mechanisms. First, the Brønsted or Lewis acid coordinates with silane 51 leading to a solvent-stabilized electron-deficient silane complex 57, where N-protected indole attacks in a Friedel–Crafts fashion to give the 3-silylindoles 60 along with molecular hydrogen (Scheme 7b and Scheme 7d
  • ). A repetition of the processes leads to the bis(indol-3-yl)silanes 40. Han described a Lewis acid-promoted C3-silylation of N-protected substituted indoles by a disproportionation mechanism of the latter. He used both B(C6F5)3 and Al(C6F5)3 in the reactions (Scheme 8a and Scheme 8c) which followed a
PDF
Album
Review
Published 19 Aug 2021

Recent advances in the syntheses of anthracene derivatives

  • Giovanni S. Baviera and
  • Paulo M. Donate

Beilstein J. Org. Chem. 2021, 17, 2028–2050, doi:10.3762/bjoc.17.131

Graphical Abstract
  • efficiently cyclized [42]. Friedel–Crafts alkylation of arenes with aromatic aldehydes The Lewis acid-catalyzed Friedel–Crafts alkylation of electron-rich arenes with aromatic aldehydes has proven an efficient and often direct method to prepare anthracene derivatives. Kodomari and co-workers disclosed a
  • intramolecular cyclization until 2012 [52]. Mohanakrishnan’s group has contributed with numerous methodologies for the synthesis of anthracene derivatives, mainly methodologies involving Lewis acid-mediated intramolecular cyclizations. For example, in 2012 they reported an annulation protocol to synthesize
  • ortho-acetal diarylmethanols. Lewis acid-mediated regioselective cyclization of asymmetric diarylmethine dipivalates and diarylmethine diols. BF3·OEt2/CF3SO3H-mediated cyclodehydration reactions of 2-(arylmethyl)benzaldehydes and 2-(arylmethyl)benzoic acids. Synthesis of 2,3,6,7
PDF
Album
Review
Published 10 Aug 2021

Progress and challenges in the synthesis of sequence controlled polysaccharides

  • Giulio Fittolani,
  • Theodore Tyrikos-Ergas,
  • Denisa Vargová,
  • Manishkumar A. Chaube and
  • Martina Delbianco

Beilstein J. Org. Chem. 2021, 17, 1981–2025, doi:10.3762/bjoc.17.129

Graphical Abstract
PDF
Album
Review
Published 05 Aug 2021
Other Beilstein-Institut Open Science Activities