Search results

Search for "electrostatic interactions" in Full Text gives 111 result(s) in Beilstein Journal of Organic Chemistry.

Investigation of the network of preferred interactions in an artificial coiled-coil association using the peptide array technique

  • Raheleh Rezaei Araghi,
  • Carsten C. Mahrenholz,
  • Rudolf Volkmer and
  • Beate Koksch

Beilstein J. Org. Chem. 2012, 8, 640–649, doi:10.3762/bjoc.8.71

Graphical Abstract
  • natural and chimeric sequences with 1:1 stoichiometry [18]. The heterooligomerization is driven by the burial of the hydrophobic surface area and is directed by electrostatic interactions between charged residues that flank the hydrophobic core. However, substituting an α-heptad with a pentad of β- and γ
  • results additionally confirm the impact of electrostatic interactions at the e and g positions. The SI values of sequences mutated in these positions show that shortening of the negatively charged side chain in the case of the Glue19Asp exchange, results in a general decline in binding affinity for almost
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2012

Enantioselective supramolecular devices in the gas phase. Resorcin[4]arene as a model system

  • Caterina Fraschetti,
  • Matthias C. Letzel,
  • Antonello Filippi,
  • Maurizio Speranza and
  • Jochen Mattay

Beilstein J. Org. Chem. 2012, 8, 539–550, doi:10.3762/bjoc.8.62

Graphical Abstract
  • stabilized by the solvation and torsional energy terms than the skew-boat one is. In contrast, the electrostatic factor may induce a stronger stabilization of the skew-boat minimum, surpassing all the other effects. It can be concluded that in vacuum, electrostatic interactions prevail against the other
PDF
Album
Review
Published 12 Apr 2012

Azobenzene dye-coupled quadruply hydrogen-bonding modules as colorimetric indicators for supramolecular interactions

  • Yagang Zhang and
  • Steven C. Zimmerman

Beilstein J. Org. Chem. 2012, 8, 486–495, doi:10.3762/bjoc.8.55

Graphical Abstract
  • ]. Noncovalent hydrogen bonding, electrostatic interactions, π–π stacking and metal coordination have been used alone and in concert to assemble a broad range of building blocks, from small molecules [4][5][6][7] to polymers [8][9] including dendrimers [10][11]. Among these noncovalent interactions, hydrogen
PDF
Album
Supp Info
Full Research Paper
Published 02 Apr 2012

Ratiometric fluorescent probe for enantioselective detection of D-cysteine in aqueous solution

  • Xiao-bo Zhou,
  • Wing-Hong Chan,
  • Albert W. M. Lee and
  • Chi-Chung Yeung

Beilstein J. Org. Chem. 2011, 7, 1508–1515, doi:10.3762/bjoc.7.176

Graphical Abstract
  • health [32]. On the basis of multipoint electrostatic interactions and structure complementarity of the host–guest, we have rationally designed and synthesised a bis(spiropyran) as a fluorescence turn-on probe for selective binding of GSH [33]. We have also developed the first spiropyran–metal sensing
PDF
Album
Full Research Paper
Published 09 Nov 2011

Organic gelators and hydrogelators

  • Jean-Pierre Desvergne

Beilstein J. Org. Chem. 2010, 6, 846–847, doi:10.3762/bjoc.6.99

Graphical Abstract
  • and electrostatic interactions, coordination, and charge transfer. Additional non-covalent interactions lead to physical entanglement of the fibres, which creates a 3D network, the fluid being trapped in the nanoscale interstices. A very large quantity of solvent can be imprisoned in the
PDF
Editorial
Published 21 Sep 2010

Functionalized copolyimide membranes for the separation of gaseous and liquid mixtures

  • Nadine Schmeling,
  • Roman Konietzny,
  • Daniel Sieffert,
  • Patrick Rölling and
  • Claudia Staudt

Beilstein J. Org. Chem. 2010, 6, 789–800, doi:10.3762/bjoc.6.86

Graphical Abstract
  • [40]. It is assumed that ionic cross-linking leads to a much lower plasticization resistance compared to covalent cross-linking because ionic aggregates are formed due to electrostatic interactions, in this case between aluminium cations and carboxylate anions. Thus, heterogeneous regions with ionic
PDF
Album
Full Research Paper
Published 12 Aug 2010

RAFT polymers for protein recognition

  • Alan F. Tominey,
  • Julia Liese,
  • Sun Wei,
  • Klaus Kowski,
  • Thomas Schrader and
  • Arno Kraft

Beilstein J. Org. Chem. 2010, 6, No. 66, doi:10.3762/bjoc.6.66

Graphical Abstract
  • : electrostatic interactions; hydrophobic effect; isothermal calorimetry; protein recognition; RAFT polymers; Introduction The ability of biological receptors to bind strongly and specifically to a particular molecular target is an essential part of biological machinery. The best example is the immune system
PDF
Album
Supp Info
Full Research Paper
Published 17 Jun 2010

The C–F bond as a conformational tool in organic and biological chemistry

  • Luke Hunter

Beilstein J. Org. Chem. 2010, 6, No. 38, doi:10.3762/bjoc.6.38

Graphical Abstract
  • , Figure 1a) [4][5]. However, it should be emphasised that such intermolecular electrostatic interactions are quite weak: for example, the C–F···H–O interaction (2) is at most one-quarter as strong as a “normal” hydrogen bond [2]. In contrast, electrostatic interactions can also occur within an
  • repulsion effect invokes a steric clash between the fluorine atoms, but since fluorine is a small atom, the dipole repulsion argument is more convincing. Charge–dipole interactions Electrostatic interactions associated with the C–F bond become more pronounced when a neighbouring group bears a formal charge
PDF
Album
Review
Published 20 Apr 2010

Molecular recognition of organic ammonium ions in solution using synthetic receptors

  • Andreas Späth and
  • Burkhard König

Beilstein J. Org. Chem. 2010, 6, No. 32, doi:10.3762/bjoc.6.32

Graphical Abstract
  • from Kebarle et al. who showed that binding of potassium ions to benzene and water in the gas phase is of similar energy [9][12]. Ammonium–π-interactions were experimentally investigated in detail as well as by ab initio calculations and are mainly based on electrostatic interactions. The binding
  • are used to enhance further the binding and selectivity with a binding mechanism that can be understood on the combined efforts of several non-covalent interactions such as hydrogen bonding, electrostatic interactions, hydrophobic interactions [20][21][22], cation–π interactions, π–π staking
PDF
Album
Review
Published 06 Apr 2010

(Pseudo)amide-linked oligosaccharide mimetics: molecular recognition and supramolecular properties

  • José L. Jiménez Blanco,
  • Fernando Ortega-Caballero,
  • Carmen Ortiz Mellet and
  • José M. García Fernández

Beilstein J. Org. Chem. 2010, 6, No. 20, doi:10.3762/bjoc.6.20

Graphical Abstract
  • monosaccharide units in glycooligomers is particularly attractive with regard to molecular recognition processes. Like thioureas and ureas, guanidines can also form bidentate hydrogen bonds. In addition, because of their positively charged character, guanidines can exert strong electrostatic interactions with
PDF
Album
Review
Published 22 Feb 2010

Synthesis and enzymatic evaluation of 2- and 4-aminothiazole- based inhibitors of neuronal nitric oxide synthase

  • Graham R. Lawton,
  • Haitao Ji,
  • Pavel Martásek,
  • Linda J. Roman and
  • Richard B. Silverman

Beilstein J. Org. Chem. 2009, 5, No. 28, doi:10.3762/bjoc.5.28

Graphical Abstract
  • partially charged in biological systems. Crystal structures of 2 bound to the active site of nNOS show that the aminopyridine group interacts with a glutamate residue (Glu592, rat nNOS), presumably via hydrogen bonding and electrostatic interactions [8][12]. The aminopyridine ring nitrogen must be
PDF
Album
Supp Info
Full Research Paper
Published 04 Jun 2009
Other Beilstein-Institut Open Science Activities