Search results

Search for "cascade" in Full Text gives 417 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Iron-catalyzed domino coupling reactions of π-systems

  • Austin Pounder and
  • William Tam

Beilstein J. Org. Chem. 2021, 17, 2848–2893, doi:10.3762/bjoc.17.196

Graphical Abstract
  • the design of novel domino reactions. Keywords: cascade; catalysis; coupling; earth-abundant; iron; Introduction Over the past couple decades, the use of transition-metal-catalyzed cross-coupling reactions have become a staple within the organic chemist’s arsenal of carbon–carbon and carbon
  • production of byproducts. Iron catalysis offers an attractive, and sustainable, approach to the aforementioned economic and ecological concerns. In the same vein, cascade reactions are important tools to meet such challenges currently facing synthetic chemists and have received considerable attention as of
  • late. Introduced by Tietze, cascade reactions are sequences of transformations where subsequent transformations occur only in virtue of functionality formed in previous steps [47]. This process repeats until a product stable under the reaction conditions is formed and the reaction terminates. Compared
PDF
Album
Review
Published 07 Dec 2021

The PIFA-initiated oxidative cyclization of 2-(3-butenyl)quinazolin-4(3H)-ones – an efficient approach to 1-(hydroxymethyl)-2,3-dihydropyrrolo[1,2-a]quinazolin-5(1H)-ones

  • Alla I. Vaskevych,
  • Nataliia O. Savinchuk,
  • Ruslan I. Vaskevych,
  • Eduard B. Rusanov,
  • Oleksandr O. Grygorenko and
  • Mykhailo V. Vovk

Beilstein J. Org. Chem. 2021, 17, 2787–2794, doi:10.3762/bjoc.17.189

Graphical Abstract
  • [13], as well as Ir-catalyzed intramolecular dehydrative cross-coupling of 2-(pyrrolidine-1-yl)benzamide [14]. Another approach to compounds of type 1 that relies on a cascade formation of the pyrimidine and pyrrole rings have found much wider application (see Scheme 1B). One of its variations
  • derivatives with 4-chloroketones or 4-oxocarboxylic acids in ionic liquids [20][21][22][23] or refluxing acetic acid [24][25]. An alternative approach involves cascade cyclization of anthranilamides with 4-chlorobutanoyl chloride [26][27]. Also, reductive cyclocondensation of 2-nitrobenzamides and
PDF
Album
Supp Info
Letter
Published 25 Nov 2021

Recent advances in the asymmetric phosphoric acid-catalyzed synthesis of axially chiral compounds

  • Alemayehu Gashaw Woldegiorgis and
  • Xufeng Lin

Beilstein J. Org. Chem. 2021, 17, 2729–2764, doi:10.3762/bjoc.17.185

Graphical Abstract
  • the yields, whereas the electronic properties of the substituents on the indole ring did. In 2019, Lin and co-workers reported the asymmetric three-component cascade reaction of 2,3-diketo esters 28, aromatic amines 29, and 1,3-cyclohexanediones 30 to prepare axially chiral arylindoles 31 in a highly
  • catalyst developed by our group is critical for increasing the enantioselectivity in this cascade reaction [38]. This catalyst can facilitate the aldol reaction to generate a stereocenter (I-7), which can then be converted to axial chirality (I-8 to I-10) and finally aromatized to give 31 (Scheme 11) [60
PDF
Album
Review
Published 15 Nov 2021

Synthetic strategies toward 1,3-oxathiolane nucleoside analogues

  • Umesh P. Aher,
  • Dhananjai Srivastava,
  • Girij P. Singh and
  • Jayashree B. S

Beilstein J. Org. Chem. 2021, 17, 2680–2715, doi:10.3762/bjoc.17.182

Graphical Abstract
  • -friendliness. Ren and colleagues [59] recently reported the preparation of an enantiopure 1,3-oxathiolane 65 utilizing a multienzymatic cascade protocol (Scheme 21). The combined use of surfactant-treated Subtilisin Carlsberg (STS) and Candida antarctica lipase B (CAL-B) resulted in the 1,3-oxathiolane ring in
PDF
Album
Review
Published 04 Nov 2021

Recent advances in organocatalytic asymmetric aza-Michael reactions of amines and amides

  • Pratibha Sharma,
  • Raakhi Gupta and
  • Raj K. Bansal

Beilstein J. Org. Chem. 2021, 17, 2585–2610, doi:10.3762/bjoc.17.173

Graphical Abstract
  • -MRs, each highlighting a certain aspect of the reaction. While Sánchez-Roselló et al. [18] classified these reactions on the basis of the nature of the substrates, Nayak et al. [19] and Bhanja et al. [20] focused on the stereoselective synthesis of nitrogen heterocycles via Michael cascade reactions
  • al. reported cinchona-based primary amine catalyzed cascade aza-Michael-aldol reaction of α,β-unsaturated ketones 6 with 2-(1H-pyrrol-2-yl)-2-oxoacetates 5 where triphenylacetic acid was used as an additive. This cascade reaction afforded highly functionalized chiral pyrrolizines 8 in good yields (70
  • –91%) with excellent levels of stereocontrol (≈92% ee, >20:1 dr in all cases). The ketone group in the cascade product was reduced asymmetrically to a chiral secondary hydroxy group (Table 1) [26]. In this case, the role of Ph3CCO2H as additive is to furnish the conjugate base Ph3CO2− anion which
PDF
Album
Review
Published 18 Oct 2021

α-Ketol and α-iminol rearrangements in synthetic organic and biosynthetic reactions

  • Scott Benz and
  • Andrew S. Murkin

Beilstein J. Org. Chem. 2021, 17, 2570–2584, doi:10.3762/bjoc.17.172

Graphical Abstract
  • 50 and 51, an α-ketol rearrangement of 52, and a hemiketal-forming cyclization of 53, all of which occurred as a cascade (Figure 12) [16]. Over a series of optimizations, it was found that performing this cascade in a solution of water at 35 °C over the course of 2.5 days produced a 75% yield of 49
  • and a 22% yield of the Diels–Alder adduct, showing that the first step of the cascade had near-quantitative yield, diastereoselectively and regioselectively. The authors speculated that it is possible, considering their own reaction efficiency in conditions reminiscent of natural ones, that the
  • -ketol rearrangement to 59. Note that this reaction took advantage of the thermodynamically preferred conversion of an α-ketoester to a β-ketoester seen in other examples in this review. Although not technically a tandem reaction due to the need to add a reagent to continue the cascade, the sequence of
PDF
Album
Review
Published 15 Oct 2021

Recent advances in the tandem annulation of 1,3-enynes to functionalized pyridine and pyrrole derivatives

  • Yi Liu,
  • Puying Luo,
  • Yang Fu,
  • Tianxin Hao,
  • Xuan Liu,
  • Qiuping Ding and
  • Yiyuan Peng

Beilstein J. Org. Chem. 2021, 17, 2462–2476, doi:10.3762/bjoc.17.163

Graphical Abstract
  • ][28][29]. In industry, pyrrole mainly comes from the extraction of coal tar, the condensation reaction of furan and ammonia under high temperature, or the cascade cyclization reaction of acetylene, formaldehyde, and ammonia. In the laboratory, there are many efficient methods for the synthesis of
  • dibromopyrroles 38, respectively. Subsequently, Punniyamurthy and co-workers also described the copper-catalyzed cascade cyclization of 2-nitro-1,3-enynes 34 to tetrasubstituted pyrroles 39 (Scheme 14) [58]. Through screening the conditions, the Cu(OTf)2-promoted (5 mol %) annulation addition reaction of 2-nitro
  • trifluoromethylated coumarins [59], we recently developed a Rh-catalyzed approach to trifluoromethyl-substituted pyrroles using the Togni reagent II as trifluoromethyl source. It involves a three-component cascade reaction of 1,3-enynes, anilines, and Togni reagent II to afford fully substituted pyrrole derivatives
PDF
Album
Review
Published 22 Sep 2021

Targeting active site residues and structural anchoring positions in terpene synthases

  • Anwei Hou and
  • Jeroen S. Dickschat

Beilstein J. Org. Chem. 2021, 17, 2441–2449, doi:10.3762/bjoc.17.161

Graphical Abstract
  • (GFPP, C25) for sesterterpene biosynthesis. Type I terpene synthases (TPSs) activate these acyclic molecules by the abstraction of diphosphate to produce a reactive allyl cation that can initiate a cascade reaction through typical carbocation chemistry, including cyclisation reactions by intramolecular
  • attack of an olefinic double bond to the cationic centre Wagner–Meerwein rearrangements, and proton or hydride migrations [2]. These multistep cascade reactions ultimately result in terpene hydrocarbons that are often (poly)cyclic and contain several stereogenic centres [3][4]. In some cases, water is
  • synthases seem to be quite random, only the active site is lined with mostly non-polar residues. They contour the active site and force the substrate into a certain conformation which, after substrate ionisation, determines the reaction pathway that is taken by the cationic cascade. Here we present site
PDF
Album
Supp Info
Letter
Published 17 Sep 2021

Advances in mercury(II)-salt-mediated cyclization reactions of unsaturated bonds

  • Sumana Mandal,
  • Raju D. Chaudhari and
  • Goutam Biswas

Beilstein J. Org. Chem. 2021, 17, 2348–2376, doi:10.3762/bjoc.17.153

Graphical Abstract
  • Pd(II) [8][9][10], Ru(II) [11][12][13], Rh(III) [14][15][16], Mn(II) [17][18][19], Au(II/I) [20][21][22], Ag(I) [23][24][25] etc. in both cascade and sequential reactions have been published. Electrophilic Hg(II) salts are important reagents in organic synthesis and there is published literature
  • , hippuristanol and some analogs were successfully synthesized utilizing a Hg(OTf)2-catalyzed cascade spiroketalization step of the 3-alkyne-1,7-diol motif. The Hg(OTf)2-catalyzed cascade spiroketalization step was proved to be more convenient than Suárez cyclization. A Hg(TFA)2-mediated cyclization was
PDF
Album
Review
Published 09 Sep 2021

Photoredox catalysis in nickel-catalyzed C–H functionalization

  • Lusina Mantry,
  • Rajaram Maayuri,
  • Vikash Kumar and
  • Parthasarathy Gandeepan

Beilstein J. Org. Chem. 2021, 17, 2209–2259, doi:10.3762/bjoc.17.143

Graphical Abstract
  • for the mode of action of this cascade arylation protocol (Figure 10) [73]. In the photocatalytic cycle, the SET event between the photoexcited iridium catalyst 10-II and the substrate oxalate 33 generates a tertiary carbon-centered radical 10-IV by decarboxylation and the reduced iridium(II
PDF
Album
Review
Published 31 Aug 2021

Transition-metal-free intramolecular Friedel–Crafts reaction by alkene activation: A method for the synthesis of some novel xanthene derivatives

  • Tülay Yıldız,
  • İrem Baştaş and
  • Hatice Başpınar Küçük

Beilstein J. Org. Chem. 2021, 17, 2203–2208, doi:10.3762/bjoc.17.142

Graphical Abstract
  • of their important biological and fluorescent uses. To summarize the main syntheses of these studies: in particular, transition metal-catalyzed cascade benzylation–cyclization [17], cyclization of polycyclic aryl triflate esters [18], reaction of β-naphthol and aldehydes [19][20] or inter- or
PDF
Album
Supp Info
Full Research Paper
Published 30 Aug 2021

Catalyzed and uncatalyzed procedures for the syntheses of isomeric covalent multi-indolyl hetero non-metallides: an account

  • Ranadeep Talukdar

Beilstein J. Org. Chem. 2021, 17, 2102–2122, doi:10.3762/bjoc.17.137

Graphical Abstract
  • 10% yield when chloranil was used as the oxidant (Scheme 25) [115]. The high electrophilicity of 178 at the C7 position resulted in this product formation. The reaction proceeds through the radical intermediate 181. Sulfides Reddy synthesized the di(indol-5-yl)sulfide (183) via a cascade strategy
PDF
Album
Review
Published 19 Aug 2021

Asymmetric organocatalyzed synthesis of coumarin derivatives

  • Natália M. Moreira,
  • Lorena S. R. Martelli and
  • Arlene G. Corrêa

Beilstein J. Org. Chem. 2021, 17, 1952–1980, doi:10.3762/bjoc.17.128

Graphical Abstract
  • hydroquinolinone, chromene, piperidine, peptide, lipid, and glycoside moieties (Scheme 2). Bojanowski and co-workers developed a methodology to synthetize 3,4-dihydrocoumarins 10 through a decarboxylative and dearomatizative cascade reaction [33]. This reaction was carried out using coumarin-3-carboxylic acids 8
  • cascade synthesis of hydrocoumarin 78 mediated by squaramide catalyst with 9-amino-9-deoxy-epi-quinine moiety 73 was reported by Albrecht et al. [59]. In this transformation, the authors developed a Michael addition of azlactones to 2-hydroxychalcones 76 followed by the opening of the azlactone 77 ring to
  • cascade reaction. Total synthesis of (+)-smyrindiol (17). Michael addition of 4-hydroxycoumarin (1) to enones 2 through a bifunctional modified binaphthyl organocatalyst 18. Michael addition of ketones 20 to 3-aroylcoumarins 19 using a cinchona alkaloid-derived primary amine catalyst 22. Enantioselective
PDF
Album
Review
Published 03 Aug 2021

A recent overview on the synthesis of 1,4,5-trisubstituted 1,2,3-triazoles

  • Pezhman Shiri,
  • Ali Mohammad Amani and
  • Thomas Mayer-Gall

Beilstein J. Org. Chem. 2021, 17, 1600–1628, doi:10.3762/bjoc.17.114

Graphical Abstract
  • investigated by means of DFT calculations using the reaction between enaminone 6a and phenyl azide. TS1 and TS2 have been proposed as two transition states, which then converted to IN1 and IN2 as two possible isomers. The stable final products were achieved via a cascade reaction including the elimination of
PDF
Album
Review
Published 13 Jul 2021

Copper-mediated oxidative C−H/N−H activations with alkynes by removable hydrazides

  • Feng Xiong,
  • Bo Li,
  • Chenrui Yang,
  • Liang Zou,
  • Wenbo Ma,
  • Linghui Gu,
  • Ruhuai Mei and
  • Lutz Ackermann

Beilstein J. Org. Chem. 2021, 17, 1591–1599, doi:10.3762/bjoc.17.113

Graphical Abstract
  • context, You [25], Huang [26], Liu [27], Li [28], and co-workers elegantly disclosed copper-mediated/catalyzed cascade C−H alkynylation and annulation with terminal alkynes to afford 3-methyleneisoindolinone derivatives, through the assistance of 8-aminoquinoline [29] or 2-aminophenyl-1H-pyrazole [30
  • intramolecular hydroamination in the presence of base. Conclusion In conclusion, we have reported on the chelation-assisted oxidative copper-promoted cascade C−H alkynylation and intramolecular annulation. The removable N-2-pyridylhydrazide was utilized to facilitate copper(II)-promoted C−H activations. Thus
PDF
Album
Supp Info
Full Research Paper
Published 08 Jul 2021

Methodologies for the synthesis of quaternary carbon centers via hydroalkylation of unactivated olefins: twenty years of advances

  • Thiago S. Silva and
  • Fernando Coelho

Beilstein J. Org. Chem. 2021, 17, 1565–1590, doi:10.3762/bjoc.17.112

Graphical Abstract
  • cascade aza-Michael addition/olefin hydroalkylation reaction between N-tosylallylamines and α,β-unsaturated ketones using a catalytic system of a gold(I) complex and a silver salt [45]. The spiro compound 25, which was obtained in moderate yield and with poor diastereoselectivity after a 20 h reaction
  • on a control experiment with substrate 34 that had a tethered internal olefin and furnished the expected cyclization product 35. This reaction indicated a radical cascade initiated by a hydrogen atom transfer from a cobalt hydride to the terminal olefin of 34, followed by a 5-exo-trig cyclization
  • an MHAT process. In 2008, Norton and co-workers [76] developed a pioneering radical cascade approach based on the generation of carbon free radicals from an MHAT process. The rates (kH) of hydrogen atom transfer (HAT) from the chromium metal hydride CpCr(CO)3H to olefins with diverse substitution
PDF
Album
Review
Published 07 Jul 2021

One-step synthesis of imidazoles from Asmic (anisylsulfanylmethyl isocyanide)

  • Louis G. Mueller,
  • Allen Chao,
  • Embarek AlWedi and
  • Fraser F. Fleming

Beilstein J. Org. Chem. 2021, 17, 1499–1502, doi:10.3762/bjoc.17.106

Graphical Abstract
  • methylene protons of butyronitrile functioning as a proton shuttle during the cyclization cascade. Screening weaker bases with stronger conjugate acids to facilitate the requisite proton transfers identified LiHMDS as optimal; the LiHMDS-promoted condensation of Asmic with benzonitrile afforded imidazole 7f
PDF
Album
Supp Info
Full Research Paper
Published 24 Jun 2021

Cascade intramolecular Prins/Friedel–Crafts cyclization for the synthesis of 4-aryltetralin-2-ols and 5-aryltetrahydro-5H-benzo[7]annulen-7-ols

  • Jie Zheng,
  • Shuyu Meng and
  • Quanrui Wang

Beilstein J. Org. Chem. 2021, 17, 1481–1489, doi:10.3762/bjoc.17.104

Graphical Abstract
  • affording intermediary benzyl carbenium ions, which are then trapped by a variety of electron-rich aromatics via Friedel–Crafts alkylation. This cascade Prins/Friedel–Crafts cyclization protocol paves an expedient path to medicinally useful 4-aryltetralin-2-ol and 5-aryltetrahydro-5H-benzo[7]annulen-7-ol
  • derivatives. Keywords: 4-aryltetralin-2-ol; 5-aryl-benzo[7]annulen-7-ol; cascade reaction; Prins/Friedel–Crafts; Introduction 2,4-Disubstituted tetralins (Figure 1, 1), especially 2-functionalized tetralins are privileged building blocks for medicinal chemistry applications which are known to exhibit a wide
  • to 2,4-disubstituted tetralin compounds and thus facilitate their biological investigations. The cascade Prins/Friedel–Crafts reaction to form multiple chemical bonds in one operation has emerged as an atom-economic and straightforward strategy for the construction of oxygen-containing heterocycles
PDF
Album
Supp Info
Full Research Paper
Published 22 Jun 2021

Synthesis of 1-indolyl-3,5,8-substituted γ-carbolines: one-pot solvent-free protocol and biological evaluation

  • Premansh Dudhe,
  • Mena Asha Krishnan,
  • Kratika Yadav,
  • Diptendu Roy,
  • Krishnan Venkatasubbaiah,
  • Biswarup Pathak and
  • Venkatesh Chelvam

Beilstein J. Org. Chem. 2021, 17, 1453–1463, doi:10.3762/bjoc.17.101

Graphical Abstract
  • –c are shown to undergo a novel cascade imination-heterocylization in the presence of the organic base DIPEA to provide 1-indolyl-3,5,8-substituted γ-carbolines 3aa–ea in good yields. The γ-carbolines are fluorescent and exhibit anticancer activities against cervical, lung, breast, skin, and kidney
  • cancer cells. Keywords: γ-carboline; cascade reaction; cell uptake; cytotoxicity; fluorescence; Introduction Carbolines are privileged aza-heterocycles found in the core of several natural and synthetic compounds and are known for their biological applications. Among the four different isomers, 9H
  • alkaloid ingenine B [20]. The iodine-catalyzed [3 + 3] cycloaddition of indolyl alcohol to enaminones [21] and the thiourea-catalyzed iso-Pictet–Spengler reaction of isotryptamine with aldehydes [22], are some noteworthy contributions to the field. A cascade or domino reaction is an interesting approach
PDF
Album
Supp Info
Letter
Published 17 Jun 2021
Graphical Abstract
  • role as donors in the intramolecular partial charge-transfer cascade to transfer the extra electronic density. Apart from pure affection besides many more reasons for the constant fascination and utility of this beautifully simple yet much effective heteroaromatic system, this unique nitrogen
PDF
Album
Supp Info
Full Research Paper
Published 02 Jun 2021

A comprehensive review of flow chemistry techniques tailored to the flavours and fragrances industries

  • Guido Gambacorta,
  • James S. Sharley and
  • Ian R. Baxendale

Beilstein J. Org. Chem. 2021, 17, 1181–1312, doi:10.3762/bjoc.17.90

Graphical Abstract
  • attempting telescoped reaction sequences, potential requirements for intermediate purification and issues arising due to heterogeneity. Hence, a batch or semi-batch (cascade CSTR’s) approach often offers a more convenient and sometimes superior synthetic approach. Efforts directed towards addressing these
PDF
Album
Review
Published 18 May 2021

Heterogeneous photocatalytic cyanomethylarylation of alkenes with acetonitrile: synthesis of diverse nitrogenous heterocyclic compounds

  • Guanglong Pan,
  • Qian Yang,
  • Wentao Wang,
  • Yurong Tang and
  • Yunfei Cai

Beilstein J. Org. Chem. 2021, 17, 1171–1180, doi:10.3762/bjoc.17.89

Graphical Abstract
  • recyclability, broad substrate scope, and high functional group tolerance (Scheme 1). Results and Discussion Our initial investigation focused on the CN-K photocatalyzed cascade alkyl radical addition/cyclization reaction of the N-arylallylamine 1a with tert-butyl N-hydroxyphthalimide (NHPI) ester (2a), a
  • experiments was performed (Scheme 7). The cyanomethylarylation reaction of 7a gave the desired compound 8a as the major product in 70% yield, along with 23% yield of the byproduct 15. The latter compound was generated through a cascade alkyl radical addition/cyclization of the NHPI ester 2d to N-aryl
PDF
Album
Supp Info
Full Research Paper
Published 17 May 2021

N-tert-Butanesulfinyl imines in the asymmetric synthesis of nitrogen-containing heterocycles

  • Joseane A. Mendes,
  • Paulo R. R. Costa,
  • Miguel Yus,
  • Francisco Foubelo and
  • Camilla D. Buarque

Beilstein J. Org. Chem. 2021, 17, 1096–1140, doi:10.3762/bjoc.17.86

Graphical Abstract
  • determined following a single-crystal X-ray analysis (Scheme 11). The stereoselective synthesis of diastereomeric 2-chloro-2-aroylaziridines 36 and 32 was successfully accomplished through a three-component cascade coupling reaction of silyldichloromethanes 33, arylnitriles 34 and chiral N-tert
PDF
Album
Review
Published 12 May 2021

Prins cyclization-mediated stereoselective synthesis of tetrahydropyrans and dihydropyrans: an inspection of twenty years

  • Asha Budakoti,
  • Pradip Kumar Mondal,
  • Prachi Verma and
  • Jagadish Khamrai

Beilstein J. Org. Chem. 2021, 17, 932–963, doi:10.3762/bjoc.17.77

Graphical Abstract
  • by introducing a nucleophile into the enol ether, which traps the reactive oxocarbenium ion intermediate 60, leading to the formation of THP [39]. The first example of an MAP cascade reaction was reported by Rychnovsky and co-workers using allylsilane 62 as an internal nucleophile, as shown in Scheme
  • -Lewis-acid-promoted asymmetric Prins cyclization strategy. List and co-workers’ iIDP Brønsted acid-promoted asymmetric Prins cyclization strategy. Zhou and co-workers’ strategy for chiral phosphoric acid (CPA)-catalyzed cascade Prins cyclization. List and co-workers’ approach for asymmetric Prins
PDF
Album
Review
Published 29 Apr 2021

Synthetic reactions driven by electron-donor–acceptor (EDA) complexes

  • Zhonglie Yang,
  • Yutong Liu,
  • Kun Cao,
  • Xiaobin Zhang,
  • Hezhong Jiang and
  • Jiahong Li

Beilstein J. Org. Chem. 2021, 17, 771–799, doi:10.3762/bjoc.17.67

Graphical Abstract
  • -radical cascade reactions could efficiently construct various carbocycles and heterocycles with multifarious structures and complexity [59][60][61]. Centered on this context, we give a clear overview on a variety of novel cyclization reactions initiated by EDA complexes from the recent years. In 2016
PDF
Album
Review
Published 06 Apr 2021
Other Beilstein-Institut Open Science Activities