Search for "oxime" in Full Text gives 134 result(s) in Beilstein Journal of Organic Chemistry.
Beilstein J. Org. Chem. 2011, 7, 866–877, doi:10.3762/bjoc.7.99
Graphical Abstract
Scheme 1: Gold-catalyzed propargylic substitutions.
Scheme 2: Propargylic substitution: scope of substrates.
Scheme 3: Propargylic substitutions on allylic/propargylic substrates.
Scheme 4: Direct propargylic substitutions: Scope of nucleophiles.
Scheme 5: Meyer–Schuster rearrangements.
Scheme 6: Silyl-protected propargyl alcohols in propargylic substitutions.
Scheme 7: Acetylacetone as nucleophile in direct propargylic substitution.
Scheme 8: Enantiomerically enriched propargylic alcohols.
Scheme 9: Scope of ‘activated’ alcohols in direct substitution reactions.
Scheme 10: BF3 vs AuCl3 in propargylic substitutions [25].
Scheme 11: The use of bis-nucleophiles in direct propargylic substitutions.
Scheme 12: Tandem reactions from protected hydroxylamines and propargylic alcohols. P = Cbz, PhSO2.
Scheme 13: Tentative hydrolysis of bis-adduct 24a.
Scheme 14: Iron-catalyzed propargylic substitutions.
Scheme 15: Isoxazolines formation.
Scheme 16: Addition of nucleophiles to isoxazolines.
Scheme 17: Potential mechanistic pathways.
Scheme 18: Synthesis of furans from homoproargylic alcohols.
Scheme 19: Synthesis of furans.
Scheme 20: Propargylic substitutions: Synthetic applications. GH2 = Grubbs–Hoveyda 2nd generation catalyst.
Beilstein J. Org. Chem. 2011, 7, 442–495, doi:10.3762/bjoc.7.57
Graphical Abstract
Figure 1: Structures of atorvastatin and other commercial statins.
Figure 2: Structure of compactin.
Scheme 1: Synthesis of pentasubstituted pyrroles.
Scheme 2: [3 + 2] Cycloaddition to prepare 5-isopropylpyrroles.
Scheme 3: Regiospecific [3 + 2] cycloaddition to prepare the pyrrole scaffold.
Scheme 4: Formation of the pyrrole core of atorvastatin via [3 + 2] cycloaddition.
Scheme 5: Formation of pyrrole 33 via the Paal–Knorr reaction.
Scheme 6: Convergent synthesis towards atorvastatin.
Figure 3: Binding pocket of sunitinib in the TRK KIT.
Scheme 7: Synthesis of sunitinib.
Scheme 8: Alternative synthesis of sunitinib.
Scheme 9: Key steps in the syntheses of sumatriptan and zolmitriptan.
Scheme 10: Introduction of the N,N-dimethylaminoethyl side chain.
Scheme 11: Japp–Klingemann reaction in the synthesis of sumatriptan.
Scheme 12: Synthesis of the intermediate sulfonyl chlorides 62 and 63.
Scheme 13: Alternative introduction of the sulfonamide.
Scheme 14: Negishi-type coupling to benzylic sulfonamides.
Scheme 15: Heck reaction used to introduce the sulfonamide side chain of naratriptan.
Scheme 16: Synthesis of the oxazolinone appendage of zolmitriptan.
Scheme 17: Grandberg indole synthesis used in the preparation of rizatriptan.
Scheme 18: Improved synthesis of rizatriptan.
Scheme 19: Larock-type synthesis of rizatriptan.
Scheme 20: Synthesis of eletriptan.
Scheme 21: Heck coupling for the indole system in eletriptan.
Scheme 22: Attempted Fischer indole synthesis of elatriptan.
Scheme 23: Successful Fischer indole synthesis for eletriptan.
Scheme 24: Mechanistic rationale for the Bischler–Möhlau reaction.
Scheme 25: Bischler-type indole synthesis used in the fluvastatin sodium synthesis.
Scheme 26: Palladium-mediated synthesis of ondansetron.
Scheme 27: Fischer indole synthesis of ondansetron.
Scheme 28: Optimised Pictet–Spengler reaction towards tadalafil.
Figure 4: Structures of carvedilol 136 and propranolol 137.
Scheme 29: Synthesis of the carbazole core of carvedilol.
Scheme 30: Alternative syntheses of 4-hydroxy-9H-carbazole.
Scheme 31: Convergent synthesis of etodolac.
Scheme 32: Alternative synthesis of etodolac.
Figure 5: Structures of imidazole-containing drugs.
Scheme 33: Synthesis of functionalised imidazoles towards losartan.
Scheme 34: Direct synthesis of the chlorinated imidazole in losartan.
Scheme 35: Synthesis of trisubstituted imidazoles.
Scheme 36: Preparation of the imidazole ring in olmesartan.
Scheme 37: Synthesis of ondansetron.
Scheme 38: Alternative route to ondansetron and its analogues.
Scheme 39: Proton pump inhibitors and synthesis of esomeprazole.
Scheme 40: Synthesis of benzimidazole core pantoprazole.
Figure 6: Structure of rabeprazole 194.
Scheme 41: Synthesis of candesartan.
Scheme 42: Alternative access to the candesartan key intermediate 216.
Scheme 43: .Medicinal chemistry route to telmisartan.
Scheme 44: Improved synthesis of telmisartan.
Scheme 45: Synthesis of zolpidem.
Scheme 46: Copper-catalysed 3-component coupling towards zolpidem.
Figure 7: Structure of celecoxib.
Scheme 47: Preparation of celecoxib.
Scheme 48: Alternative synthesis of celecoxib.
Scheme 49: Regioselective access to celecoxib.
Scheme 50: Synthesis of pazopanib.
Scheme 51: Syntheses of anastrozole, rizatriptan and letrozole.
Scheme 52: Regioselective synthesis of anastrozole.
Scheme 53: Triazine-mediated triazole formation towards anastrozole.
Scheme 54: Alternative routes to 1,2,4-triazoles.
Scheme 55: Initial synthetic route to sitagliptin.
Figure 8: Binding of sitagliptin within DPP-IV.
Scheme 56: The process route to sitagliptin key intermediate 280.
Scheme 57: Synthesis of maraviroc.
Scheme 58: Synthesis of alprazolam.
Scheme 59: The use of N-nitrosoamidine derivatives in the preparation of fused benzodiazepines.
Figure 9: Structures of itraconazole, ravuconazole and voriconazole.
Scheme 60: Synthesis of itraconazole.
Scheme 61: Synthesis of rufinamide.
Scheme 62: Representative tetrazole formation in valsartan.
Figure 10: Structure of tetrazole containing olmesartan, candesartan and irbesartan.
Scheme 63: Early stage introduction of the tetrazole in losartan.
Scheme 64: Synthesis of cilostazol.
Figure 11: Structure of cefdinir.
Scheme 65: Semi-synthesis of cefdinir.
Scheme 66: Thiazole syntheses towards ritonavir.
Scheme 67: Synthesis towards pramipexole.
Scheme 68: Alternative route to pramipexole.
Scheme 69: Synthesis of famotidine.
Scheme 70: Efficient synthesis of the hyperuricemic febuxostat.
Scheme 71: Synthesis of ziprasidone.
Figure 12: Structure of mometasone.
Scheme 72: Industrial access to 2-furoic acid present in mometasone.
Scheme 73: Synthesis of ranitidine from furfuryl alcohol.
Scheme 74: Synthesis of nitrofurantoin.
Scheme 75: Synthesis of benzofuran.
Scheme 76: Synthesis of amiodarone.
Scheme 77: Synthesis of raloxifene.
Scheme 78: Alternative access to the benzo[b]thiophene core of raloxifene.
Scheme 79: Gewald reaction in the synthesis of olanzapine.
Scheme 80: Alternative synthesis of olanzapine.
Figure 13: Access to simple thiophene-containing drugs.
Scheme 81: Synthesis of clopidogrel.
Scheme 82: Pictet–Spengler reaction in the preparation of tetrahydrothieno[3,2-c]pyridine (422).
Scheme 83: Alternative synthesis of key intermediate 422.
Figure 14: Co-crystal structures of timolol (left) and carazolol (right) in the β-adrenergic receptor.
Scheme 84: Synthesis of timolol.
Scheme 85: Synthesis of tizanidine 440.
Scheme 86: Synthesis of leflunomide.
Scheme 87: Synthesis of sulfamethoxazole.
Scheme 88: Synthesis of risperidone.
Figure 15: Relative abundance of selected transformations.
Figure 16: The abundance of heterocycles within top 200 drugs (5-membered rings).
Beilstein J. Org. Chem. 2011, 7, 59–74, doi:10.3762/bjoc.7.10
Graphical Abstract
Scheme 1: Synthesis of selective D3 receptor ligands.
Scheme 2: Synthesis of a novel 5-HT1B receptor antagonist.
Scheme 3: Synthesis of A-366833, a selective α4β2 neural nicotinic receptor agonist.
Scheme 4: A new route to oxcarbazepine.
Scheme 5: Synthesis of key intermediates for norepinephrine transporter (NET) inhibitors.
Scheme 6: N-Annulation yielding substituted indole for the synthesis of demethylasterriquinone A1.
Scheme 7: Palladium-catalysed double N-arylation contributing to the synthesis of murrazoline.
Scheme 8: Synthesis of vitamin E amines.
Scheme 9: Improved synthesis of martinellic acid.
Scheme 10: New tariquidar-derived ABCB1 inhibitors.
Scheme 11: β-Carbolin-1-ones as inhibitors of tumour cell proliferation.
Scheme 12: Copper-catalysed synthesis of promazine drugs.
Scheme 13: Palladium-catalysed multicomponent reaction for the synthesis of promazine drugs.
Scheme 14: Key intermediate for imatinib.
Scheme 15: Synthesis of an effective Chek1/KDR kinase inhibitor.
Scheme 16: Macrocyclization as final step of the synthesis of heat shock protein inhibitor.
Scheme 17: Synthesis of N-arylimidazoles.
Scheme 18: Synthesis of benzolactam V8.
Scheme 19: Synthesis of an intermediate for lotrafiban (SB-214857).
Scheme 20: Intermolecular effort towards lotrafiban.
Scheme 21: Synthesis of matrix metalloproteases (MMPs) inhibitor.
Scheme 22: Regioselective 9-N-arylation of purines.
Scheme 23: N-Arylation of adenine and cytosine.
Scheme 24: 9-N-Arylpurines as enterovirus inhibitors.
Scheme 25: Xanthine analogues as kinase inhibitors.
Scheme 26: Synthesis of dual PPARα/γ agonists.
Scheme 27: N-Aryltriazole ribonucleosides with anti-proliferative activity.
Beilstein J. Org. Chem. 2010, 6, No. 68, doi:10.3762/bjoc.6.68
Graphical Abstract
Scheme 1: Preparation of 2 and 4 by treatment of cinnamyl alcohol (1).
Figure 1: The crystal structure of compound 4. Ellipsoids correspond to 50% probability levels.
Figure 2: Packing diagram of compound 4 viewed perpendicular to (101). Hydrogen bonds are indicated by thick ...
Scheme 2: Suggested mechanism for the formation of 4.
Beilstein J. Org. Chem. 2009, 5, No. 33, doi:10.3762/bjoc.5.33
Graphical Abstract
Scheme 1: Aziridine containing natural products.
Scheme 2: Mitomycin structures and nomenclature.
Scheme 3: Base catalysed epimerization of mitomycin B.
Scheme 4: Biosynthesis of mitomycin C (MMC) 7.
Scheme 5: Mode of action of mitomycin C.
Scheme 6: The N–C3–C9a disconnection.
Scheme 7: Danishefsky’s Retrosynthesis of mitomycin K.
Scheme 8: Hetero Diels–Alder reaction en route to mitomycins.
Scheme 9: Nitroso Diels–Alder cycloaddition.
Scheme 10: Frank azide cycloadddition.
Scheme 11: Final steps of mitomycin K synthesis. aPDC, DCM; bPhSCH2N3, PhH, 80 °C; cL-selectride, THF, −78 °C; ...
Scheme 12: Naruta–Maruyama retrosynthesis.
Scheme 13: Synthesis of a leucoaziridinomitosane by nitrene cycloaddition. aAlCl3-Et2O; bNaH, ClCH2OMe; cn-BuL...
Scheme 14: Thermal decomposition of azidoquinone 51.
Scheme 15: Diastereoselectivity during the cycloaddition.
Scheme 16: Oxidation with iodo-azide.
Scheme 17: Williams’ approach towards mitomycins.aDEIPSCl, Imidazole, DCM; bPd/C, HCO2NH4, MeOH; cAllocCl, NaH...
Scheme 18: Synthesis of pyrrolidones by homoconjugate addition.
Scheme 19: Homoconjugate addition on the fully functionalized substrate.
Scheme 20: Introduction of the olefin.
Scheme 21: Retrosynthesis of N–C9a, N–C3 bond formation.
Scheme 22: Synthesis of the pyrrolo[1,2]indole 82 using N-PSP activation.aAc2O, Py; bAc2O, Hg(OAc)2, AcOH, 90%...
Scheme 23: Synthesis of an aziridinomitosane. am-CPBA, DCM then iPr2NH, CCl4 reflux; bK2CO3, MeOH; cBnBr, KH; d...
Scheme 24: Oxidation products of a leucoaziridinomitosane obtained from a Polonovski oxidation.
Scheme 25: Polonovski oxidation of an aziridinomitosane. am-CPBA; bPd/C, H2; cDimethoxypropane, PPTS.
Scheme 26: The C1–C9a disconnection.
Scheme 27: Ziegler synthesis of desmethoxymitomycin A.aIm2C=O, THF; bNH3; cTMSOTf, 2,6-di-tert-butylpyridine, ...
Scheme 28: Transformation of sodium erythorbate.aTBDMSCl; bNaN3; cPPh3; d(Boc)2O, DMAP; eTBAF; fTf2O, Pyr.
Scheme 29: Formation of C9,C10-unsaturation in the mitomycins. am-CPBA, DCM; bO3, MeOH; cMe2S; dKHMDS, (EtO)3P...
Scheme 30: Fragmentation mechanism.
Scheme 31: Michael addition-cyclisation.
Scheme 32: SmI2 8-endo-dig cyclisation.
Scheme 33: Synthesis of pyrrolo[1,2-a]indole by 5-exo-dig radical cyclization.
Scheme 34: The C9–C9a disconnection.
Scheme 35: Intramolecular nitrile oxide cycloaddition.
Scheme 36: Regioselectivity of the INOC.
Scheme 37: Fukuyama’s INOC strategy.
Scheme 38: Synthesis of a mitosane core by rearrangement of a 1-(1-pyrrolidinyl)-1,3-butadiene.
Scheme 39: Sulikowski synthesis of an aziridinomitosene. aPd(Tol3P)2Cl2, Bu3SnF, 140; bH2, Pd/C; cTFAA, Et3N; d...
Scheme 40: Enantioselective carbene insertion.
Scheme 41: Parson’s radical cyclization.
Scheme 42: Cha’s mitomycin B core synthesis.
Scheme 43: The N-aromatic disconnection.
Scheme 44: Kishi retrosynthesis.
Scheme 45: Kishi synthesis of a starting material. aallyl bromide, K2CO3, acetone, reflux; bN,N-Dimethylanilin...
Scheme 46: Kishi synthesis of MMC 7. aLDA, THF, −78 °C then PhSeBr, THF, −78 °C; bH2O2, THF-EtOAc; cDIBAL, DCM...
Scheme 47: Acid catalyzed degradation of MMC 7.
Scheme 48: In vivo formation of apomitomycin B.
Scheme 49: Advanced intermediate for apomitomycin B synthesis.
Scheme 50: Remers synthesis of a functionalized mitosene. aTMSCl, Et3N, ZnCl2 then NBS; bAcOK; cNH2OH; dPd/C, H...
Scheme 51: Coleman synthesis of desmethoxymitomycin A. aSnCl2, PhSH, Et3N, CH3CN; bClCO2Bn, Et3N; cPPh3, DIAD,...
Scheme 52: Transition state and pyrrolidine synthesis.
Scheme 53: Air oxidation of mitosanes and aziridinomitosanes.
Scheme 54: The C9-aromatic disconnection.
Scheme 55: Synthesis of the aziridine precursor. aLHMDS, THF; bNaOH; c(s)-α-Me-BnNH2, DCC, HOBT; dDIBAL; eK2CO3...
Scheme 56: Synthesis of 206 via enamine conjugate addition.
Scheme 57: Rapoport synthesis of an aziridinomitosene.
Scheme 58: One pot synthesis of a mitomycin analog.
Scheme 59: Synthesis of compound 218 via intramolecular Heck coupling. aEtMgCl, THF, then 220; bMsCl, Et3N; cN...
Scheme 60: Elaboration of indole 223. aEt3N, Ac2O; bAcOH; cSOCl2, Et3N; dNaN3, DMF; eH2SO4, THF; fK2CO3, MeOH; ...
Scheme 61: C9-C9a functionalization from indole.
Scheme 62: Synthesis of mitomycin K. a2 equiv. MoO5.HMPA, MeOH; bPPh3, Et3N, THF-H2O; cMeOTf, Py, DCM; dMe3SiCH...
Scheme 63: Configurational stability of mitomycin K derivatives.
Scheme 64: Epimerization of carbon C9a in compound 227b.
Scheme 65: Corey–Chaykovsky synthesis of indol 235.
Scheme 66: Cory intramolecular aza-Darzens reaction for the formation of aziridinomitosene 239.
Scheme 67: Jimenez synthesis of aziridinomitosene 242.
Scheme 68: Von Braun opening of indoline 244.
Scheme 69: C9a oxidation of an aziridinomitosane with DDQ/OsO4.
Scheme 70: Synthesis of epi-mitomycin K. aNaH, Me2SO4; bH2, Pd/C; cMitscher reagent [165]; d[(trimethylsilyl)methyl...
Scheme 71: Mitomycins rearrangement.
Scheme 72: Fukuyama’s retrosynthesis.
Scheme 73: [2+3] Cycloaddition en route to isomitomycin A. aToluene, 110 °C; bDIBAL, THF, −78 °C; cAc2O, Py.; d...
Scheme 74: Final steps of Fukuyama’s synthesis.
Scheme 75: “Crisscross annulation”.
Scheme 76: Synthesis of 274; the 8-membered ring 274 was made using a crisscross annulation. a20% Pd(OH)2/C, H2...
Scheme 77: Conformational analysis of compound 273 and 275.
Scheme 78: Synthesis of a mitomycin analog. aNa2S2O4, H2O, DCM; bBnBr (10 equiv), K2CO3, 18-crown-6 (cat.), TH...
Scheme 79: Vedejs retrosynthesis.
Scheme 80: Formation of the azomethine ylide.
Scheme 81: Vedejs second synthesis of an aziridinomitosene. aDIBAL; bTPAP, NMO; c287; dTBSCl, imidazole.
Scheme 82: Trityl deprotection and new aziridine protecting group 300.
Scheme 83: Ene reaction towards benzazocinones.
Scheme 84: Benzazocenols via homo-Brook rearrangement.
Scheme 85: Pt-catalyzed [3+2] cycloaddition.
Scheme 86: Carbonylative lactamization entry to benzazocenols. aZn(OTf)2, (+)-N-methylephedrine, Et3N, TMS-ace...
Scheme 87: 8 membered ring formation by RCM. aBOC2O, NaHCO3; bTBSCl, Imidazole, DMF; callyl bromide, NaH, DMF; ...
Scheme 88: Aziridinomitosene synthesis. aTMSN3; bTFA; cPOCl3, DMF; dNaClO2, NaH2PO4, 2-methyl-2-butene; eMeI, ...
Scheme 89: Metathesis from an indole.
Scheme 90: Synthesis of early biosynthetic intermediates of mitomycins.
Beilstein J. Org. Chem. 2008, 4, No. 32, doi:10.3762/bjoc.4.32
Graphical Abstract
Scheme 1: Transmission of asymmetry in the conjugate addition of allyl sulfones to ethyl crotonate depending ...
Scheme 2: Preparation of donor precursors for conjugate addition (1), bearing a remote stereogenic center.
Scheme 3: Borch reductive amination of acetophenones.
Scheme 4: Preparation of [(9-anthryl)alkyl]- and (mesitylalkyl)amines 6h and 6j from nitriles via imines 8.
Figure 1: Calculated minimum energy conformation of lithiated amino-substituted sulfone 1a showing π-interact...
Beilstein J. Org. Chem. 2008, 4, No. 31, doi:10.3762/bjoc.4.31
Graphical Abstract
Figure 1: Therapeutic antifungal agents.
Figure 2: Structure of sordarin (1) and sordaricin (2).
Scheme 1: Kato’s retrosynthetic plan.
Scheme 2: Synthesis of cyclopentadiene 13.
Scheme 3: Synthesis of sordaricin methyl ester.
Scheme 4: Mander’s retrosynthetic plan.
Scheme 5: Synthesis of iodo compound 27.
Scheme 6: Synthesis of sordaricin (2).
Scheme 7: Retrosynthesis of sordarin and sordaricin.
Scheme 8: Synthesis of ketone 43.
Scheme 9: Synthesis of β-keto ethyl ester 45.
Scheme 10: Synthesis of tetracyclic framework 52.
Scheme 11: Synthesis of sordaricin and sordarin.
Figure 3: Modifications of glycosyl part.
Scheme 12: Simplified model of sordarin.
Scheme 13: Synthesis of cyclopentane analog precursors.
Scheme 14: Synthesis of six cyclopentane analogs.
Scheme 15: Retrosynthetic plan of sordarin analog.
Scheme 16: Synthesis of sordarin analog 98.
Scheme 17: Synthesis of sordarin analog 103.
Beilstein J. Org. Chem. 2008, 4, No. 26, doi:10.3762/bjoc.4.26
Graphical Abstract
Figure 1: The two general synthetic approaches to oxazolo[5,4-d]pyrimidines.
Figure 2: Thermal cyclodehydration route to 9-oxo-guanine.
Figure 3: Preparation of 2-substituted 5-aminooxazolo[5,4-d]pyrimidin-7(6H)-ones.
Figure 4: Preparation of 2-substituted 5-aminooxazolo[5,4-d]pyrimidin-7(6H)-ones and related thioethers.
Figure 5: Click chemistry elaboration of a 5-(propargylthio)oxazolo[5,4-d]pyrimidine.
Beilstein J. Org. Chem. 2007, 3, No. 20, doi:10.1186/1860-5397-3-20
Graphical Abstract
Scheme 1: Conversion of coumarin-4-one oximes to 3-alkyl-1,2-benzisoxazole derivatives.
Scheme 2: Reactions of 3-halomethyl derivatives with other nucleophiles.
Scheme 3: Sultone oximes and its precursor ketones.
Scheme 4: Synthesis of 1,2-benzoxathiin-4(3H)-one-2,2-dioxide 6 from methanesulfonate of salicylaldehyde.
Scheme 5: Preparation of 1,2-benzoxathiin-4(3H)-one-2,2-dioxides.
Scheme 6: Preparation of sultone oximes.
Scheme 7: Preparation of 3-alkyl-1,2-benzisoxazole derivatives.
Scheme 8: Synthesis of zonisamide from 1,2-benzisoxazole-3-methane-sulfonate.