Search results

Search for "peroxide" in Full Text gives 236 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

CF3SO2X (X = Na, Cl) as reagents for trifluoromethylation, trifluoromethylsulfenyl-, -sulfinyl- and -sulfonylation. Part 1: Use of CF3SO2Na

  • Hélène Guyon,
  • Hélène Chachignon and
  • Dominique Cahard

Beilstein J. Org. Chem. 2017, 13, 2764–2799, doi:10.3762/bjoc.13.272

Graphical Abstract
  • to a wide range of alkenes featuring various functional groups. Further reduction of the N–O bond by Mo(CO)6 gave the corresponding alcohols. A protocol free of peroxide initiator was developed by Yang, Vicic and co-workers using a manganese salt and O2 from air [35]. Styrene derivatives were
  • generation of the peroxide from the combination of NMP and O2 as the radical initiator was proposed by Lei and co-workers [36]. This method was based on a previous work by Maiti (see Scheme 5) [24] but did not require a metal to generate the CF3 radical. Tertiary β-trifluoromethyl alcohols 36 were obtained
  • by reaction of tert-butyl hydroperoxide with CF3SO2Na in the presence of a copper(II) catalyst (Scheme 34). Substrates with sensitive functional groups may not be tolerated under such reaction conditions and a large excess amount of peroxide was necessary to reach high yields. That is how, in 1998
PDF
Album
Full Research Paper
Published 19 Dec 2017

Synthesis and photophysical properties of novel benzophospholo[3,2-b]indole derivatives

  • Mio Matsumura,
  • Mizuki Yamada,
  • Atsuya Muranaka,
  • Misae Kanai,
  • Naoki Kakusawa,
  • Daisuke Hashizume,
  • Masanobu Uchiyama and
  • Shuji Yasuike

Beilstein J. Org. Chem. 2017, 13, 2304–2309, doi:10.3762/bjoc.13.226

Graphical Abstract
  • ]indole 3 in 66% yield. Then, the chemical modification of the phosphorus atom of 3 was carried out and the results are shown in Scheme 2. The treatment of 3 with hydrogen peroxide, elemental sulfur, and elemental selenium afforded the corresponding phosphine oxide 4, sulfide 5, and selenide 6
PDF
Album
Supp Info
Letter
Published 30 Oct 2017

Difunctionalization of alkenes with iodine and tert-butyl hydroperoxide (TBHP) at room temperature for the synthesis of 1-(tert-butylperoxy)-2-iodoethanes

  • Hao Wang,
  • Cui Chen,
  • Weibing Liu and
  • Zhibo Zhu

Beilstein J. Org. Chem. 2017, 13, 2023–2027, doi:10.3762/bjoc.13.200

Graphical Abstract
  • , which are inaccessible through conventional synthetic methods. This method generates multiple radical intermediates in situ and has excellent regioselectivity, a broad substrate scope and mild conditions. The iodine and peroxide groups of 1-(tert-butylperoxy)-2-iodoethanes have several potential
  • light [19][20], hypervalent iodine reagents [21][22], acids [23], organoammonium iodides [24] and iodine [25]. These catalysts are often employed in combination with a peroxide and generally produce an organoperoxide. Organic peroxides are important and useful compounds because of their unique chemical
  • for iodination and peroxidation of the C=C double bond of alkenes and shows good functional group compatibility. Furthermore, the mild reaction conditions of this methodology and the ease of further modification of the iodine and peroxide groups in 1-(tert-butylperoxy)-2-iodoethanes indicate that this
PDF
Album
Supp Info
Letter
Published 28 Sep 2017

New bio-nanocomposites based on iron oxides and polysaccharides applied to oxidation and alkylation reactions

  • Daily Rodríguez-Padrón,
  • Alina M. Balu,
  • Antonio A. Romero and
  • Rafael Luque

Beilstein J. Org. Chem. 2017, 13, 1982–1993, doi:10.3762/bjoc.13.194

Graphical Abstract
  • supported iron oxide based catalytic systems [46] have been extensity reported to be active, stable and selective catalysts for the oxidation of alcohols with hydrogen peroxide. Specifically, the oxidation of benzyl alcohol to benzaldehyde has generated great interest in order to study the oxidation of
  • was measured at room temperature at low frequency (470 Hz) using a Bartington MS-2 instrument. Catalytic experiments The oxidation of benzyl alcohol to benzaldehyde was performed using 25 mg of catalyst, 0.2 mL of benzyl alcohol, 0.3 mL of hydrogen peroxide, and 2 mL of acetonitrile as the solvent
PDF
Album
Supp Info
Full Research Paper
Published 21 Sep 2017

Synthesis of benzannelated sultams by intramolecular Pd-catalyzed arylation of tertiary sulfonamides

  • Valentin A. Rassadin,
  • Mirko Scholz,
  • Anastasiia A. Klochkova,
  • Armin de Meijere and
  • Victor V. Sokolov

Beilstein J. Org. Chem. 2017, 13, 1932–1939, doi:10.3762/bjoc.13.187

Graphical Abstract
  • examples [25][26]. More recently, Zard et al. have developed a sequence of lauroyl peroxide-catalyzed radical additions of xanthate to substituted N-aryl vinyl sulfonamides and subsequent intramolecular cyclization to yield benzo-annelated γ-sultams [27]. Quite interestingly, the obtained sultams were
PDF
Album
Supp Info
Full Research Paper
Published 12 Sep 2017

Chiral phase-transfer catalysis in the asymmetric α-heterofunctionalization of prochiral nucleophiles

  • Johannes Schörgenhumer,
  • Maximilian Tiffner and
  • Mario Waser

Beilstein J. Org. Chem. 2017, 13, 1753–1769, doi:10.3762/bjoc.13.170

Graphical Abstract
  • -transfer reactions is hydrogen peroxide (H2O2). Unfortunately, the direct use of this base-chemical under asymmetric organocatalysis turned out to be rather tricky for α-hydroxylation reactions. One recent report by the Ooi group overcame some of the limitations by using H2O2 in combination with
PDF
Album
Review
Published 22 Aug 2017

Oxidative dehydrogenation of C–C and C–N bonds: A convenient approach to access diverse (dihydro)heteroaromatic compounds

  • Santanu Hati,
  • Ulrike Holzgrabe and
  • Subhabrata Sen

Beilstein J. Org. Chem. 2017, 13, 1670–1692, doi:10.3762/bjoc.13.162

Graphical Abstract
  • that enables such transformation requires special mention. Herein we indicate such an elegant report where o-aminobenzamide 43 were reacted with various methyl(hetero)arenes in the presence of di-tert-butyl peroxide (DTBP, 0.9 mmol), p-toluenesulfonic acid (0.6 mmol) in DMSO at 110 °C for ≈20 hours to
  • -mediated oxidative dehydrogenation. NBS-mediated oxidative dehydrogenation of tetrahydro-β-carbolines. One-pot synthesis of various methyl(hetero)arenes from o-aminobenzamide in presence of di-tert-butyl peroxide (DTBP). Oxidative dehydrogenation of 1, 4-DHPs. Synthesis of quinazolines in the presence of
PDF
Album
Review
Published 15 Aug 2017

The chemistry and biology of mycolactones

  • Matthias Gehringer and
  • Karl-Heinz Altmann

Beilstein J. Org. Chem. 2017, 13, 1596–1660, doi:10.3762/bjoc.13.159

Graphical Abstract
PDF
Album
Review
Published 11 Aug 2017

New electroactive asymmetrical chalcones and therefrom derived 2-amino- / 2-(1H-pyrrol-1-yl)pyrimidines, containing an N-[ω-(4-methoxyphenoxy)alkyl]carbazole fragment: synthesis, optical and electrochemical properties

  • Daria G. Selivanova,
  • Alexei A. Gorbunov,
  • Olga A. Mayorova,
  • Alexander N. Vasyanin,
  • Igor V. Lunegov,
  • Elena V. Shklyaeva and
  • Georgii G. Abashev

Beilstein J. Org. Chem. 2017, 13, 1583–1595, doi:10.3762/bjoc.13.158

Graphical Abstract
  • ethanolic media resulted in the formation of 1,3-diarylsubstituted prop-2-en-1-ones 6a,b [23]. Cyclization of chalcones 6a,b with guanidine sulfate followed by oxidation with hydrogen peroxide gave rise to 2-amino-4,6-disubstituted pyrimidines 7a,b [24]. 2-(1H-Pyrrol-1-yl)pyrimidines 8a,b were synthesized
PDF
Album
Supp Info
Full Research Paper
Published 10 Aug 2017

Synthesis of oligonucleotides on a soluble support

  • Harri Lönnberg

Beilstein J. Org. Chem. 2017, 13, 1368–1387, doi:10.3762/bjoc.13.134

Graphical Abstract
  • ) (1.5–2.0 equiv) was then coupled in a 1:10 mixture of MeCN and DCM using 5-(benzylthio)-1H-tetrazole as an activator. After completion of the coupling, oxidation to the phosphate ester was carried out in the same pot by addition of 2-butanone peroxide in DCM. Dilution with MeOH precipitated the support
PDF
Album
Review
Published 12 Jul 2017

Detection of therapeutic radiation in three-dimensions

  • John A. Adamovics

Beilstein J. Org. Chem. 2017, 13, 1325–1331, doi:10.3762/bjoc.13.129

Graphical Abstract
  • reactive to a clinical radiation dose a radical initiator is required. The most effective class of initiators are halocarbons while azo- and peroxide-based initiators were unstable to the temperatures generated during the manufacture of the dosimeters [17][41]. The dose sensitivity was found to be
PDF
Album
Review
Published 05 Jul 2017

Urea–hydrogen peroxide prompted the selective and controlled oxidation of thioglycosides into sulfoxides and sulfones

  • Adesh Kumar Singh,
  • Varsha Tiwari,
  • Kunj Bihari Mishra,
  • Surabhi Gupta and
  • Jeyakumar Kandasamy

Beilstein J. Org. Chem. 2017, 13, 1139–1144, doi:10.3762/bjoc.13.113

Graphical Abstract
  • thioglycosides to corresponding glycosyl sulfoxides and sulfones is reported using urea–hydrogen peroxide (UHP). A wide range of glycosyl sulfoxides are selectively achieved using 1.5 equiv of UHP at 60 °C while corresponding sulfones are achieved using 2.5 equiv of UHP at 80 °C in acetic acid. Remarkably
  • , oxidation susceptible olefin functional groups were found to be stable during the oxidation of sulfide. Keywords: monosaccharides; oxidation; sulfones; sulfoxides; thioglycosides; urea–hydrogen peroxide; Introduction Organosulfur compounds such as sulfides, sulfoxides and sulfones are useful intermediates
  • , intolerance of other oxidation susceptible functional groups, etc. Thus, developing a mild and efficient method for the controlled oxidation of sulfides to corresponding glycosyl sulfoxides and sulfones, is of great interest. The utility of hydrogen peroxide–solid adducts in organic synthesis is well explored
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2017

Correction: Fluorescent carbon dots from mono- and polysaccharides: synthesis, properties and applications

  • Stephen Hill and
  • M. Carmen Galan

Beilstein J. Org. Chem. 2017, 13, 1136–1138, doi:10.3762/bjoc.13.112

Graphical Abstract
  • residues in Scheme 15; the corrected scheme (Scheme 2) is shown below: The carbohydrate polymers in Schemes 20 and 22 were depicted as poly-peroxide with one oxygen atom too many in the repeating unit, repectively; the corrected schemes (Scheme 3 and Scheme 4) are shown below: Corrected Scheme 9 of the
PDF
Album
Original
Article
Correction
Published 13 Jun 2017

α-Acetoxyarone synthesis via iodine-catalyzed and tert-butyl hydroperoxide-mediateded self-intermolecular oxidative coupling of aryl ketones

  • Liquan Tan,
  • Cui Chen and
  • Weibing Liu

Beilstein J. Org. Chem. 2017, 13, 1079–1084, doi:10.3762/bjoc.13.107

Graphical Abstract
  • transition-metal-catalyzed direct oxidative coupling reactions of carbonyl compounds with carboxylic acids (or their surrogates) [8][9]. Recently, robust approaches using organohypervalent iodine reagents and peroxide-mediated oxidative coupling have been developed [10][11]. Although impressive progress has
  • ). However, decreasing the amount of Na2CO3 from 1.0 equiv to 0.1 equiv significantly decreased the product yield. The effects of other peroxides, i.e., di-tert-butyl peroxide (DTBP), benzoyl peroxide, dicumyl peroxide (DCP), cumene hydroperoxide (CHP), potassium hydrogen persulfate, and 3
PDF
Album
Supp Info
Letter
Published 06 Jun 2017

Adsorption of RNA on mineral surfaces and mineral precipitates

  • Elisa Biondi,
  • Yoshihiro Furukawa,
  • Jun Kawai and
  • Steven A. Benner

Beilstein J. Org. Chem. 2017, 13, 393–404, doi:10.3762/bjoc.13.42

Graphical Abstract
  • peroxide (30%) followed by water and then ethanol to remove potential organic surface contaminants. The samples were then dried in air while covered. To flat surfaces of the cleaned mineral were added droplets of an aqueous (unbuffered) solution of 5’-32P labeled 83-mer RNA (2 µL, 50 nM). This length was
  • thousand other variables that might influence these results [32]. Mitigating this concern is the fact that the patterns of adsorbance were unchanged in these experiments whether or not the mineral was cleaned by treating with hydrogen peroxide or diluted acid. However, as a cautionary note, we point to the
PDF
Album
Full Research Paper
Published 01 Mar 2017

Total synthesis of a Streptococcus pneumoniae serotype 12F CPS repeating unit hexasaccharide

  • Peter H. Seeberger,
  • Claney L. Pereira and
  • Subramanian Govindan

Beilstein J. Org. Chem. 2017, 13, 164–173, doi:10.3762/bjoc.13.19

Graphical Abstract
  • employing a more nucleophilic and less basic reagent such as a lithium hydroxide/hydrogen peroxide mixture did not provide relief from the problem, but instead also produced a mixture of undesired products. Adjustments in the sequence of deprotection steps by first carrying out hydrogenolysis using Pd/C in
PDF
Album
Supp Info
Full Research Paper
Published 25 Jan 2017

Extrusion – back to the future: Using an established technique to reform automated chemical synthesis

  • Deborah E. Crawford

Beilstein J. Org. Chem. 2017, 13, 65–75, doi:10.3762/bjoc.13.9

Graphical Abstract
  • by extrusion, the material has a resultantly higher surface area exposed directly to heat. The material is exposed to heat usually only for a couple of minutes, which then avoids polymer degradation [3]. Narayan reports the addition of an initiator, Lupersol, a di-tertiary alkyl peroxide which
PDF
Album
Review
Published 11 Jan 2017

TBHP-mediated highly efficient dehydrogenative cross-oxidative coupling of methylarenes with acetanilides

  • Cui Chen,
  • Weibing Liu and
  • Peng Zhou

Beilstein J. Org. Chem. 2016, 12, 2250–2255, doi:10.3762/bjoc.12.217

Graphical Abstract
  • , entries 1–3). The results show that the reaction was completed after 24 h and led to the desired N-phenylbenzamide 3aa in 62% GC yield (Table 1, entry 2). Disappointingly, other peroxides like di-tert-butylperoxide (DTBP), benzoyl peroxide, dicumyl peroxide (DCP), methyl ethyl ketone peroxide (MEKP), tert
PDF
Album
Supp Info
Full Research Paper
Published 25 Oct 2016

Stereo- and regioselectivity of the hetero-Diels–Alder reaction of nitroso derivatives with conjugated dienes

  • Lucie Brulíková,
  • Aidan Harrison,
  • Marvin J. Miller and
  • Jan Hlaváč

Beilstein J. Org. Chem. 2016, 12, 1949–1980, doi:10.3762/bjoc.12.184

Graphical Abstract
  • transformation, hydrogen peroxide and m-CPBA are the most popular (see examples in Scheme 4). In the literature, the oxidation of hydroxylamines is described most frequently using Fe(III) salts, m-CPBA or TBAPI and the reaction is performed exclusively using a solid-phase synthetic approach (see examples in
  • the corresponding hydroxamic acids using, for example, periodate [14], Dess–Martin periodinane [64], Swern oxidation conditions [65], lead and silver oxide [66], and transition-metal oxidation with peroxide as the oxidant [67]. In a recent work by Tusun dirhodium caprolactamate [68], and the aerobic
  • chiral alkyl N-dienylpyroglutamates 190 with acylnitroso intermediates 191 generated through a Ru(II) or Ir(I)-catalyzed hydrogen peroxide oxidation of hydroxamic acids (Scheme 38) [143]. The Ru(II) complexes A–D have previously been reported [144] as efficient catalysts for the oxidation of hydroxamic
PDF
Album
Review
Published 01 Sep 2016

Rearrangements of organic peroxides and related processes

  • Ivan A. Yaremenko,
  • Vera A. Vil’,
  • Dmitry V. Demchuk and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2016, 12, 1647–1748, doi:10.3762/bjoc.12.162

Graphical Abstract
  • unnamed rearrangement reactions of peroxides. It should be noted, that in the chemistry of peroxides two types of processes are considered under the term rearrangements. These are conventional rearrangements occurring with the retention of the molecular weight and transformations of one of the peroxide
  • processes of important natural and synthetic peroxides are discussed separately. Keywords: artemisinin; Baeyer−Villiger; Criegee; Hock; peroxide; rearrangement; Introduction The chemistry of organic peroxides has more than a hundred-year history. Currently, organic peroxides are widely used as oxidizing
  • six-membered 1,2-dioxane [40][41][42], 1,2-dioxene [43], 1,2,4-trioxane [22][44][45] cycles. The naturally occuring peroxide artemisinin and its semisynthetic derivatives, artemether, arteether, and artesunate, are applied in large scale for malaria treatment [46][47]. Organic peroxides, their
PDF
Album
Review
Published 03 Aug 2016

Biosynthesis of oxygen and nitrogen-containing heterocycles in polyketides

  • Franziska Hemmerling and
  • Frank Hahn

Beilstein J. Org. Chem. 2016, 12, 1512–1550, doi:10.3762/bjoc.12.148

Graphical Abstract
  • consumption of hydrogen peroxide. It has been shown that the AS is substrate tolerant and accepts different hydroxylation patterns as well as glycosylations on the chalcone A and B rings [154]. However, the oxidative half-reaction only occurs with chalcones and not with other aryl substrates like L-tyrosine
PDF
Album
Review
Published 20 Jul 2016

Automated glycan assembly of a S. pneumoniae serotype 3 CPS antigen

  • Markus W. Weishaupt,
  • Stefan Matthies,
  • Mattan Hurevich,
  • Claney L. Pereira,
  • Heung Sik Hahm and
  • Peter H. Seeberger

Beilstein J. Org. Chem. 2016, 12, 1440–1446, doi:10.3762/bjoc.12.139

Graphical Abstract
  • using a mixture of lithium hydroxide and hydrogen peroxide to avoid elimination reactions which are common for uronic acid methyl esters under strongly basic conditions [30][32]. In the next step, the remaining esters were removed employing sodium hydroxide in methanol. Finally, catalytic hydrogenation
PDF
Album
Supp Info
Full Research Paper
Published 12 Jul 2016

From steroids to aqueous supramolecular chemistry: an autobiographical career review

  • Bruce C. Gibb

Beilstein J. Org. Chem. 2016, 12, 684–701, doi:10.3762/bjoc.12.69

Graphical Abstract
  • therefore a 90% yield of the 1-peroxide rather than the 2- or 5-peroxide. In essence therefore the octa-acid not only facilitates reaction by dissolution in aqueous solution, it also engenders highly selective photochemical conversion via the transfer of chemical information – in the form of 1O2 – from one
PDF
Album
Review
Published 12 Apr 2016

Interactions between 4-thiothymidine and water-soluble cyclodextrins: Evidence for supramolecular structures in aqueous solutions

  • Vito Rizzi,
  • Sergio Matera,
  • Paola Semeraro,
  • Paola Fini and
  • Pinalysa Cosma

Beilstein J. Org. Chem. 2016, 12, 549–563, doi:10.3762/bjoc.12.54

Graphical Abstract
  • , ROS (namely singlet oxygen, superoxide ions and hydrogen peroxide), generated via the excited state of the PS, destroy the PS itself. Because of this, the effort to preserve the PS is one of main issues. Regarding S4TdR, as a result of its photodynamic activity, the thiobase can be destroyed by a
PDF
Album
Supp Info
Full Research Paper
Published 21 Mar 2016

Aluminacyclopentanes in the synthesis of 3-substituted phospholanes and α,ω-bisphospholanes

  • Vladimir A. D’yakonov,
  • Alevtina L. Makhamatkhanova,
  • Rina A. Agliullina,
  • Leisan K. Dilmukhametova,
  • Tat’yana V. Tyumkina and
  • Usein M. Dzhemilev

Beilstein J. Org. Chem. 2016, 12, 406–412, doi:10.3762/bjoc.12.43

Graphical Abstract
  • dichlorophosphines (R′PCl2). Hydrogen peroxide oxidation and treatment with S8 of the synthesized phospholanes and α,ω-bisphospholanes afforded the corresponding 3-alkyl(aryl)-1-alkyl(phenyl)phospholane 1-oxides, 3-alkyl(aryl)-1-alkyl(phenyl)phospholane 1-sulfides, bisphospholane 1,1'-dioxides, and bisphospholane
  • regioisomers react in situ with phosphorus dihalides and hydrogen peroxide to afford 1-phenyl(alkyl)-2-arylphospholane oxides 7a–f and 1-phenyl(alkyl)-3-arylphospholane oxides 8a–f in 2:1 ratio in a 69–87% total yield (Table 2). The regioisomers were isolated by column chromatography (hexane/ethyl acetate
  • ]+): 277.4046; found: 277.4. Preparation of 3-alkyl(aryl)phospholane-1-oxides (general procedure) A 30% solution of hydrogen peroxide (0.7 mL, 6 mmol) was slowly added dropwise with vigorous stirring to a solution of 3-alkyl(benzyl)-1-alkyl(phenyl)phospholane (5 mmol), synthesized as described above, in
PDF
Album
Supp Info
Full Research Paper
Published 02 Mar 2016
Other Beilstein-Institut Open Science Activities