Search results

Search for "peroxide" in Full Text gives 229 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

The chemistry and biology of mycolactones

  • Matthias Gehringer and
  • Karl-Heinz Altmann

Beilstein J. Org. Chem. 2017, 13, 1596–1660, doi:10.3762/bjoc.13.159

Graphical Abstract
PDF
Album
Review
Published 11 Aug 2017

New electroactive asymmetrical chalcones and therefrom derived 2-amino- / 2-(1H-pyrrol-1-yl)pyrimidines, containing an N-[ω-(4-methoxyphenoxy)alkyl]carbazole fragment: synthesis, optical and electrochemical properties

  • Daria G. Selivanova,
  • Alexei A. Gorbunov,
  • Olga A. Mayorova,
  • Alexander N. Vasyanin,
  • Igor V. Lunegov,
  • Elena V. Shklyaeva and
  • Georgii G. Abashev

Beilstein J. Org. Chem. 2017, 13, 1583–1595, doi:10.3762/bjoc.13.158

Graphical Abstract
  • ethanolic media resulted in the formation of 1,3-diarylsubstituted prop-2-en-1-ones 6a,b [23]. Cyclization of chalcones 6a,b with guanidine sulfate followed by oxidation with hydrogen peroxide gave rise to 2-amino-4,6-disubstituted pyrimidines 7a,b [24]. 2-(1H-Pyrrol-1-yl)pyrimidines 8a,b were synthesized
PDF
Album
Supp Info
Full Research Paper
Published 10 Aug 2017

Synthesis of oligonucleotides on a soluble support

  • Harri Lönnberg

Beilstein J. Org. Chem. 2017, 13, 1368–1387, doi:10.3762/bjoc.13.134

Graphical Abstract
  • ) (1.5–2.0 equiv) was then coupled in a 1:10 mixture of MeCN and DCM using 5-(benzylthio)-1H-tetrazole as an activator. After completion of the coupling, oxidation to the phosphate ester was carried out in the same pot by addition of 2-butanone peroxide in DCM. Dilution with MeOH precipitated the support
PDF
Album
Review
Published 12 Jul 2017

Detection of therapeutic radiation in three-dimensions

  • John A. Adamovics

Beilstein J. Org. Chem. 2017, 13, 1325–1331, doi:10.3762/bjoc.13.129

Graphical Abstract
  • reactive to a clinical radiation dose a radical initiator is required. The most effective class of initiators are halocarbons while azo- and peroxide-based initiators were unstable to the temperatures generated during the manufacture of the dosimeters [17][41]. The dose sensitivity was found to be
PDF
Album
Review
Published 05 Jul 2017

Urea–hydrogen peroxide prompted the selective and controlled oxidation of thioglycosides into sulfoxides and sulfones

  • Adesh Kumar Singh,
  • Varsha Tiwari,
  • Kunj Bihari Mishra,
  • Surabhi Gupta and
  • Jeyakumar Kandasamy

Beilstein J. Org. Chem. 2017, 13, 1139–1144, doi:10.3762/bjoc.13.113

Graphical Abstract
  • thioglycosides to corresponding glycosyl sulfoxides and sulfones is reported using urea–hydrogen peroxide (UHP). A wide range of glycosyl sulfoxides are selectively achieved using 1.5 equiv of UHP at 60 °C while corresponding sulfones are achieved using 2.5 equiv of UHP at 80 °C in acetic acid. Remarkably
  • , oxidation susceptible olefin functional groups were found to be stable during the oxidation of sulfide. Keywords: monosaccharides; oxidation; sulfones; sulfoxides; thioglycosides; urea–hydrogen peroxide; Introduction Organosulfur compounds such as sulfides, sulfoxides and sulfones are useful intermediates
  • , intolerance of other oxidation susceptible functional groups, etc. Thus, developing a mild and efficient method for the controlled oxidation of sulfides to corresponding glycosyl sulfoxides and sulfones, is of great interest. The utility of hydrogen peroxide–solid adducts in organic synthesis is well explored
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2017

Correction: Fluorescent carbon dots from mono- and polysaccharides: synthesis, properties and applications

  • Stephen Hill and
  • M. Carmen Galan

Beilstein J. Org. Chem. 2017, 13, 1136–1138, doi:10.3762/bjoc.13.112

Graphical Abstract
  • residues in Scheme 15; the corrected scheme (Scheme 2) is shown below: The carbohydrate polymers in Schemes 20 and 22 were depicted as poly-peroxide with one oxygen atom too many in the repeating unit, repectively; the corrected schemes (Scheme 3 and Scheme 4) are shown below: Corrected Scheme 9 of the
PDF
Album
Original
Article
Correction
Published 13 Jun 2017

α-Acetoxyarone synthesis via iodine-catalyzed and tert-butyl hydroperoxide-mediateded self-intermolecular oxidative coupling of aryl ketones

  • Liquan Tan,
  • Cui Chen and
  • Weibing Liu

Beilstein J. Org. Chem. 2017, 13, 1079–1084, doi:10.3762/bjoc.13.107

Graphical Abstract
  • transition-metal-catalyzed direct oxidative coupling reactions of carbonyl compounds with carboxylic acids (or their surrogates) [8][9]. Recently, robust approaches using organohypervalent iodine reagents and peroxide-mediated oxidative coupling have been developed [10][11]. Although impressive progress has
  • ). However, decreasing the amount of Na2CO3 from 1.0 equiv to 0.1 equiv significantly decreased the product yield. The effects of other peroxides, i.e., di-tert-butyl peroxide (DTBP), benzoyl peroxide, dicumyl peroxide (DCP), cumene hydroperoxide (CHP), potassium hydrogen persulfate, and 3
PDF
Album
Supp Info
Letter
Published 06 Jun 2017

Adsorption of RNA on mineral surfaces and mineral precipitates

  • Elisa Biondi,
  • Yoshihiro Furukawa,
  • Jun Kawai and
  • Steven A. Benner

Beilstein J. Org. Chem. 2017, 13, 393–404, doi:10.3762/bjoc.13.42

Graphical Abstract
  • peroxide (30%) followed by water and then ethanol to remove potential organic surface contaminants. The samples were then dried in air while covered. To flat surfaces of the cleaned mineral were added droplets of an aqueous (unbuffered) solution of 5’-32P labeled 83-mer RNA (2 µL, 50 nM). This length was
  • thousand other variables that might influence these results [32]. Mitigating this concern is the fact that the patterns of adsorbance were unchanged in these experiments whether or not the mineral was cleaned by treating with hydrogen peroxide or diluted acid. However, as a cautionary note, we point to the
PDF
Album
Full Research Paper
Published 01 Mar 2017

Total synthesis of a Streptococcus pneumoniae serotype 12F CPS repeating unit hexasaccharide

  • Peter H. Seeberger,
  • Claney L. Pereira and
  • Subramanian Govindan

Beilstein J. Org. Chem. 2017, 13, 164–173, doi:10.3762/bjoc.13.19

Graphical Abstract
  • employing a more nucleophilic and less basic reagent such as a lithium hydroxide/hydrogen peroxide mixture did not provide relief from the problem, but instead also produced a mixture of undesired products. Adjustments in the sequence of deprotection steps by first carrying out hydrogenolysis using Pd/C in
PDF
Album
Supp Info
Full Research Paper
Published 25 Jan 2017

Extrusion – back to the future: Using an established technique to reform automated chemical synthesis

  • Deborah E. Crawford

Beilstein J. Org. Chem. 2017, 13, 65–75, doi:10.3762/bjoc.13.9

Graphical Abstract
  • by extrusion, the material has a resultantly higher surface area exposed directly to heat. The material is exposed to heat usually only for a couple of minutes, which then avoids polymer degradation [3]. Narayan reports the addition of an initiator, Lupersol, a di-tertiary alkyl peroxide which
PDF
Album
Review
Published 11 Jan 2017

TBHP-mediated highly efficient dehydrogenative cross-oxidative coupling of methylarenes with acetanilides

  • Cui Chen,
  • Weibing Liu and
  • Peng Zhou

Beilstein J. Org. Chem. 2016, 12, 2250–2255, doi:10.3762/bjoc.12.217

Graphical Abstract
  • , entries 1–3). The results show that the reaction was completed after 24 h and led to the desired N-phenylbenzamide 3aa in 62% GC yield (Table 1, entry 2). Disappointingly, other peroxides like di-tert-butylperoxide (DTBP), benzoyl peroxide, dicumyl peroxide (DCP), methyl ethyl ketone peroxide (MEKP), tert
PDF
Album
Supp Info
Full Research Paper
Published 25 Oct 2016

Stereo- and regioselectivity of the hetero-Diels–Alder reaction of nitroso derivatives with conjugated dienes

  • Lucie Brulíková,
  • Aidan Harrison,
  • Marvin J. Miller and
  • Jan Hlaváč

Beilstein J. Org. Chem. 2016, 12, 1949–1980, doi:10.3762/bjoc.12.184

Graphical Abstract
  • transformation, hydrogen peroxide and m-CPBA are the most popular (see examples in Scheme 4). In the literature, the oxidation of hydroxylamines is described most frequently using Fe(III) salts, m-CPBA or TBAPI and the reaction is performed exclusively using a solid-phase synthetic approach (see examples in
  • the corresponding hydroxamic acids using, for example, periodate [14], Dess–Martin periodinane [64], Swern oxidation conditions [65], lead and silver oxide [66], and transition-metal oxidation with peroxide as the oxidant [67]. In a recent work by Tusun dirhodium caprolactamate [68], and the aerobic
  • chiral alkyl N-dienylpyroglutamates 190 with acylnitroso intermediates 191 generated through a Ru(II) or Ir(I)-catalyzed hydrogen peroxide oxidation of hydroxamic acids (Scheme 38) [143]. The Ru(II) complexes A–D have previously been reported [144] as efficient catalysts for the oxidation of hydroxamic
PDF
Album
Review
Published 01 Sep 2016

Rearrangements of organic peroxides and related processes

  • Ivan A. Yaremenko,
  • Vera A. Vil’,
  • Dmitry V. Demchuk and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2016, 12, 1647–1748, doi:10.3762/bjoc.12.162

Graphical Abstract
  • unnamed rearrangement reactions of peroxides. It should be noted, that in the chemistry of peroxides two types of processes are considered under the term rearrangements. These are conventional rearrangements occurring with the retention of the molecular weight and transformations of one of the peroxide
  • processes of important natural and synthetic peroxides are discussed separately. Keywords: artemisinin; Baeyer−Villiger; Criegee; Hock; peroxide; rearrangement; Introduction The chemistry of organic peroxides has more than a hundred-year history. Currently, organic peroxides are widely used as oxidizing
  • six-membered 1,2-dioxane [40][41][42], 1,2-dioxene [43], 1,2,4-trioxane [22][44][45] cycles. The naturally occuring peroxide artemisinin and its semisynthetic derivatives, artemether, arteether, and artesunate, are applied in large scale for malaria treatment [46][47]. Organic peroxides, their
PDF
Album
Review
Published 03 Aug 2016

Biosynthesis of oxygen and nitrogen-containing heterocycles in polyketides

  • Franziska Hemmerling and
  • Frank Hahn

Beilstein J. Org. Chem. 2016, 12, 1512–1550, doi:10.3762/bjoc.12.148

Graphical Abstract
  • consumption of hydrogen peroxide. It has been shown that the AS is substrate tolerant and accepts different hydroxylation patterns as well as glycosylations on the chalcone A and B rings [154]. However, the oxidative half-reaction only occurs with chalcones and not with other aryl substrates like L-tyrosine
PDF
Album
Review
Published 20 Jul 2016

Automated glycan assembly of a S. pneumoniae serotype 3 CPS antigen

  • Markus W. Weishaupt,
  • Stefan Matthies,
  • Mattan Hurevich,
  • Claney L. Pereira,
  • Heung Sik Hahm and
  • Peter H. Seeberger

Beilstein J. Org. Chem. 2016, 12, 1440–1446, doi:10.3762/bjoc.12.139

Graphical Abstract
  • using a mixture of lithium hydroxide and hydrogen peroxide to avoid elimination reactions which are common for uronic acid methyl esters under strongly basic conditions [30][32]. In the next step, the remaining esters were removed employing sodium hydroxide in methanol. Finally, catalytic hydrogenation
PDF
Album
Supp Info
Full Research Paper
Published 12 Jul 2016

From steroids to aqueous supramolecular chemistry: an autobiographical career review

  • Bruce C. Gibb

Beilstein J. Org. Chem. 2016, 12, 684–701, doi:10.3762/bjoc.12.69

Graphical Abstract
  • therefore a 90% yield of the 1-peroxide rather than the 2- or 5-peroxide. In essence therefore the octa-acid not only facilitates reaction by dissolution in aqueous solution, it also engenders highly selective photochemical conversion via the transfer of chemical information – in the form of 1O2 – from one
PDF
Album
Review
Published 12 Apr 2016

Interactions between 4-thiothymidine and water-soluble cyclodextrins: Evidence for supramolecular structures in aqueous solutions

  • Vito Rizzi,
  • Sergio Matera,
  • Paola Semeraro,
  • Paola Fini and
  • Pinalysa Cosma

Beilstein J. Org. Chem. 2016, 12, 549–563, doi:10.3762/bjoc.12.54

Graphical Abstract
  • , ROS (namely singlet oxygen, superoxide ions and hydrogen peroxide), generated via the excited state of the PS, destroy the PS itself. Because of this, the effort to preserve the PS is one of main issues. Regarding S4TdR, as a result of its photodynamic activity, the thiobase can be destroyed by a
PDF
Album
Supp Info
Full Research Paper
Published 21 Mar 2016

Aluminacyclopentanes in the synthesis of 3-substituted phospholanes and α,ω-bisphospholanes

  • Vladimir A. D’yakonov,
  • Alevtina L. Makhamatkhanova,
  • Rina A. Agliullina,
  • Leisan K. Dilmukhametova,
  • Tat’yana V. Tyumkina and
  • Usein M. Dzhemilev

Beilstein J. Org. Chem. 2016, 12, 406–412, doi:10.3762/bjoc.12.43

Graphical Abstract
  • dichlorophosphines (R′PCl2). Hydrogen peroxide oxidation and treatment with S8 of the synthesized phospholanes and α,ω-bisphospholanes afforded the corresponding 3-alkyl(aryl)-1-alkyl(phenyl)phospholane 1-oxides, 3-alkyl(aryl)-1-alkyl(phenyl)phospholane 1-sulfides, bisphospholane 1,1'-dioxides, and bisphospholane
  • regioisomers react in situ with phosphorus dihalides and hydrogen peroxide to afford 1-phenyl(alkyl)-2-arylphospholane oxides 7a–f and 1-phenyl(alkyl)-3-arylphospholane oxides 8a–f in 2:1 ratio in a 69–87% total yield (Table 2). The regioisomers were isolated by column chromatography (hexane/ethyl acetate
  • ]+): 277.4046; found: 277.4. Preparation of 3-alkyl(aryl)phospholane-1-oxides (general procedure) A 30% solution of hydrogen peroxide (0.7 mL, 6 mmol) was slowly added dropwise with vigorous stirring to a solution of 3-alkyl(benzyl)-1-alkyl(phenyl)phospholane (5 mmol), synthesized as described above, in
PDF
Album
Supp Info
Full Research Paper
Published 02 Mar 2016

Synthesis and reactivity of aliphatic sulfur pentafluorides from substituted (pentafluorosulfanyl)benzenes

  • Norbert Vida,
  • Jiří Václavík and
  • Petr Beier

Beilstein J. Org. Chem. 2016, 12, 110–116, doi:10.3762/bjoc.12.12

Graphical Abstract
  • the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic 10.3762/bjoc.12.12 Abstract Oxidation of 3- and 4-pentafluorosulfanyl-substituted anisoles and phenols with hydrogen peroxide and sulfuric acid provided a mixture of SF5-substituted muconolactone, maleic, and succinic acids. A plausible
  • -(pentafluorosulfanyl)anisole (1) or 4-(pentafluorosulfanyl)phenol (2) by a mixture of aqueous hydrogen peroxide and concentrated sulfuric acid (Scheme 1). The major product was muconolactone 3 while maleic acid 4 and succinic acid 5 were formed in small amounts. Herein we report a full account of this oxidation
  • )anisole and 4-(pentafluorosulfanyl)phenol the meta-derivatives 10 and 11 underwent oxidation with aqueous hydrogen peroxide in sulfuric acid to provide SF5-muconolactone and SF5-maleic acid as main products. Improved conversion of SF5-maleic acid was rationalized by preferential formation of SF5
PDF
Album
Supp Info
Full Research Paper
Published 20 Jan 2016

Supramolecular polymer assembly in aqueous solution arising from cyclodextrin host–guest complexation

  • Jie Wang,
  • Zhiqiang Qiu,
  • Yiming Wang,
  • Li Li,
  • Xuhong Guo,
  • Duc-Truc Pham,
  • Stephen F. Lincoln and
  • Robert K. Prud’homme

Beilstein J. Org. Chem. 2016, 12, 50–72, doi:10.3762/bjoc.12.7

Graphical Abstract
  • greatly deceased upon the addition of β-CD because host–guest complexation of ferrocene masks its hydrophobicity and the hydrophilic exterior of the complexing β-CD much decreases association between the polymer chains. The same effect occurs when hydrogen peroxide is added to aqueous BPEI-FC and the
PDF
Album
Review
Published 12 Jan 2016

Enantioselective additions of copper acetylides to cyclic iminium and oxocarbenium ions

  • Jixin Liu,
  • Srimoyee Dasgupta and
  • Mary P. Watson

Beilstein J. Org. Chem. 2015, 11, 2696–2706, doi:10.3762/bjoc.11.290

Graphical Abstract
  • -aryltetrahydroisoquinolines with alkynes (Scheme 11) [33]. By using an iridium-based photoredox catalyst in combination with benzoyl peroxide, iminium ion 7 is formed in situ. This strategy enables reduction of the reaction temperature, ultimately enabling higher enantioselectivities. With respect to the scope of alkynes
PDF
Album
Review
Published 22 Dec 2015

Iron complexes of tetramine ligands catalyse allylic hydroxyamination via a nitroso–ene mechanism

  • David Porter,
  • Belinda M.-L. Poon and
  • Peter J. Rutledge

Beilstein J. Org. Chem. 2015, 11, 2549–2556, doi:10.3762/bjoc.11.275

Graphical Abstract
  • 5. Nicholas and Kalita have reported that the addition of hydrogen peroxide can improve yields in their copper-catalysed allylic amination reactions using BocNHOH [41]. Thus the addition of hydrogen peroxide (1:1 relative to BocNHOH) to reactions with 4 or 5 was investigated. Using a 1:1:1 ratio of
  • cyclohexene:BocNHOH:H2O2 with FeTPA (4) at 1 mol %, allylic hydroxylamine 9 was formed in only 4% yield, with the allylic oxidation products 9 and 10 predominant. This is not unexpected given the propensity of hydrogen peroxide to react directly with iron complexes to produce 10 and 11 via Fenton-type pathways [47][53
PDF
Album
Supp Info
Full Research Paper
Published 11 Dec 2015

Recent advances in copper-catalyzed C–H bond amidation

  • Jie-Ping Wan and
  • Yanfeng Jing

Beilstein J. Org. Chem. 2015, 11, 2209–2222, doi:10.3762/bjoc.11.240

Graphical Abstract
  • via the catalysis with CuBr and oxidation with tert-butyl peroxide. Besides the application of N-substituted and unsubstituted amides in the synthesis of 35, the sulfonamidation using TsNH2 was also successfully performed. In addition, this copper-catalyzed amidation protocol was also found to be
  • initiated by the Cu(II)-based bidentated intermediate 38, which proceeded via a series of different intermediate states 39–41 to provide products 37 in the presence of tert-butyl peroxide. By means of the assistance of molecular oxygen, Nicholas and John [58] devised the copper-catalyzed 2-amidation and
  • sulfonamidation of 2-arylpyridines via C–H activation. Besides the peroxide-free advantage, the C–H amination using aniline was found applicable to allow the synthesis of biarylamine. More recently, based on the DG strategy, the Yu group [59] designed the o-amidation of arylamides with copper catalysis under
PDF
Album
Review
Published 17 Nov 2015

Preparative semiconductor photoredox catalysis: An emerging theme in organic synthesis

  • David W. Manley and
  • John C. Walton

Beilstein J. Org. Chem. 2015, 11, 1570–1582, doi:10.3762/bjoc.11.173

Graphical Abstract
  • donor and ‘picks up’ holes thereby releasing a cascade of extremely reactive hydroxyl radicals (see Figure 2). Oxygen acts as the acceptor, picks up electrons from the semiconductor surface, so yielding superoxide anions that are converted to hydroperoxyl radicals and to hydrogen peroxide on successive
PDF
Album
Review
Published 09 Sep 2015

Pyridine-promoted dediazoniation of aryldiazonium tetrafluoroborates: Application to the synthesis of SF5-substituted phenylboronic esters and iodobenzenes

  • George Iakobson,
  • Junyi Du,
  • Alexandra M. Z. Slawin and
  • Petr Beier

Beilstein J. Org. Chem. 2015, 11, 1494–1502, doi:10.3762/bjoc.11.162

Graphical Abstract
  • according to Wang and co-corkers was studied [64][65] (Table 1). The borylation of 1a took place in a reasonable yield in the presence of catalytic amounts of benzoyl peroxide (BPO, Table 1, entry 1), while for 1b, heating without any additives was preferable; however, the yield of 2b was only moderate
PDF
Album
Supp Info
Full Research Paper
Published 26 Aug 2015
Other Beilstein-Institut Open Science Activities