Search results

Search for "transition metal" in Full Text gives 665 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Bifunctional thiourea-catalyzed asymmetric [3 + 2] annulation reactions of 2-isothiocyanato-1-indanones with barbiturate-based olefins

  • Jiang-Song Zhai and
  • Da-Ming Du

Beilstein J. Org. Chem. 2022, 18, 25–36, doi:10.3762/bjoc.18.3

Graphical Abstract
  • conveniently and comprehensively. However, as we know, the construction of these compounds is mostly carried out through transition-metal-catalyzed cyclization reactions [11][12][13][14], whereas strategies using bifunctional chiral thiourea catalysts are rarely reported. In 2018, Du's group reported a novel
PDF
Album
Supp Info
Full Research Paper
Published 04 Jan 2022

Study on the interactions between melamine-cored Schiff bases with cucurbit[n]urils of different sizes and its application in detecting silver ions

  • Jun-Xian Gou,
  • Yang Luo,
  • Xi-Nan Yang,
  • Wei Zhang,
  • Ji-Hong Lu,
  • Zhu Tao and
  • Xin Xiao

Beilstein J. Org. Chem. 2021, 17, 2950–2958, doi:10.3762/bjoc.17.204

Graphical Abstract
  • : cucurbiturils; melamine; Schiff base; silver ion; Introduction Schiff bases [1] are usually synthesized by the condensation of amines and active carbonyl compounds, endowing them both nitrogen and oxygen donor atoms [2][3][4][5]. Schiff bases are not only easy to coordinate with various transition metal ions
PDF
Album
Supp Info
Full Research Paper
Published 17 Dec 2021

Iron-catalyzed domino coupling reactions of π-systems

  • Austin Pounder and
  • William Tam

Beilstein J. Org. Chem. 2021, 17, 2848–2893, doi:10.3762/bjoc.17.196

Graphical Abstract
  • the design of novel domino reactions. Keywords: cascade; catalysis; coupling; earth-abundant; iron; Introduction Over the past couple decades, the use of transition-metal-catalyzed cross-coupling reactions have become a staple within the organic chemist’s arsenal of carbon–carbon and carbon
  • products and processes that reduce or eliminate the use and generation of hazardous substances, as well as increase the atom economy of the reaction [9]. Among the transition-metal (TM) catalysts often used, the late transition metals like rhodium [10][11][12][13][14], palladium [15][16][17][18][19
  • . Iron-catalyzed cross dehydrogenative coupling Transition-metal-catalyzed carbon–carbon (C–C) or carbon–heteroatom (C–X) bond formation involving two different C–H bonds or one C–H and one X–H bond is formally known as cross dehydrogenative coupling (CDC) and is quite attractive to synthetic organic
PDF
Album
Review
Published 07 Dec 2021

Selective sulfonylation and isonitrilation of para-quinone methides employing TosMIC as a source of sulfonyl group or isonitrile group

  • Chuanhua Qu,
  • Run Huang,
  • Yong Li,
  • Tong Liu,
  • Yuan Chen and
  • Guiting Song

Beilstein J. Org. Chem. 2021, 17, 2822–2831, doi:10.3762/bjoc.17.193

Graphical Abstract
  • sulfones is a valuable and appealing task in synthetic chemistry. Traditionally, diarylmethyl sulfones are synthesized by transition-metal-catalyzed deoxy C–S bond-coupling reaction of sodium arylsulfinates with diarylmethanols [11], C–H functionalization of alkyl sulfones with aryl halides [12], and via a
PDF
Album
Supp Info
Full Research Paper
Published 02 Dec 2021

Me3Al-mediated domino nucleophilic addition/intramolecular cyclisation of 2-(2-oxo-2-phenylethyl)benzonitriles with amines; a convenient approach for the synthesis of substituted 1-aminoisoquinolines

  • Krishna M. S. Adusumalli,
  • Lakshmi N. S. Konidena,
  • Hima B. Gandham,
  • Krishnaiah Kumari,
  • Krishna R. Valluru,
  • Satya K. R. Nidasanametla,
  • Venkateswara R. Battula and
  • Hari K. Namballa

Beilstein J. Org. Chem. 2021, 17, 2765–2772, doi:10.3762/bjoc.17.186

Graphical Abstract
  • ] receptors. They are useful in the synthesis of phosphorescent materials [22][23][24], fluorosensors [25]. and also found as chiral ligands in a variety of transition metal catalysts [26][27][28][29][30]. Given the pharmacological promiscuity of this scaffold, extensive efforts from different groups led to
  • the development of several approaches for the efficient construction of these heterocyclic frameworks (Scheme 1). Traditional preparations for 1-aminoisoquinolines include nucleophilic substitution of 1-haloisoquinolines with amines either employing a base [31][32][33][34][35] or a transition metal
PDF
Album
Supp Info
Letter
Published 16 Nov 2021

Recent advances in the asymmetric phosphoric acid-catalyzed synthesis of axially chiral compounds

  • Alemayehu Gashaw Woldegiorgis and
  • Xufeng Lin

Beilstein J. Org. Chem. 2021, 17, 2729–2764, doi:10.3762/bjoc.17.185

Graphical Abstract
  • ][21] (Figure 2), and chiral building blocks in modern organic synthesis [5]. During the past decades, both C2 and non-C2 symmetric axially chiral biaryl compounds such as BINAP, BINAM, NOBIN and their derivatives BINOL have played a crucial role as ligands in the development of transition-metal
  • aryl–aryl cross-coupling using various transition-metal catalysts has rarely been successful for the enantioselective construction of hindered biaryls [39] due to the discord between the temperature tolerance of the rotational axis and the high temperature required for C–H activation and suffered from
  • the important reports by Akiyama and Terada [31][47], chiral phosphoric acids have received much attention in the efficient construction of chiral molecules not only by using them as organocatalysts, but also by applying them as ligands in transition-metal catalysis due to their multifunctionality
PDF
Album
Review
Published 15 Nov 2021

Synthetic strategies toward 1,3-oxathiolane nucleoside analogues

  • Umesh P. Aher,
  • Dhananjai Srivastava,
  • Girij P. Singh and
  • Jayashree B. S

Beilstein J. Org. Chem. 2021, 17, 2680–2715, doi:10.3762/bjoc.17.182

Graphical Abstract
  • introduction on important classical approaches and older yet creative methods to provide the reader with a historical context. For comparison, this will be followed by a discussion of more modern techniques, including chiral auxiliaries for neighboring group participation and transition metal-catalyzed
PDF
Album
Review
Published 04 Nov 2021

Synthesis of highly substituted fluorenones via metal-free TBHP-promoted oxidative cyclization of 2-(aminomethyl)biphenyls. Application to the total synthesis of nobilone

  • Ilya A. P. Jourjine,
  • Lukas Zeisel,
  • Jürgen Krauß and
  • Franz Bracher

Beilstein J. Org. Chem. 2021, 17, 2668–2679, doi:10.3762/bjoc.17.181

Graphical Abstract
  • radical cyclizations [22], Pschorr reactions [23], and diverse cycloaddition protocols [24][25]. Especially transition-metal-catalyzed cross-coupling reactions starting from benzophenones, benzoic acids, dihalogenated benzene building blocks and others have emerged as new approaches in recent years [26
  • ][27][28]. Various approaches starting from functionalized biaryls have hereby attracted considerable interest, since the precursors are readily available by established cross-coupling reactions. Beyond transition-metal-catalyzed reactions, acid-mediated cyclizations of biphenylcarboxylic acids and
  • group (Scheme 2) [33]. In contrast to transition-metal-mediated approaches [27], metal-free oxidative methods are attractive not only from an ecological point of view, but also due to the typically low cost of the applied oxidants. Biarylcarboxaldehydes were cyclized to fluorenones using K2S2O8 [34
PDF
Album
Supp Info
Correction
Full Research Paper
Published 02 Nov 2021

AlBr3-Promoted stereoselective anti-hydroarylation of the acetylene bond in 3-arylpropynenitriles by electron-rich arenes: synthesis of 3,3-diarylpropenenitriles

  • Yelizaveta Gorbunova,
  • Dmitry S. Ryabukhin and
  • Aleksander V. Vasilyev

Beilstein J. Org. Chem. 2021, 17, 2663–2667, doi:10.3762/bjoc.17.180

Graphical Abstract
  • nitriles 1. At the last step of the reaction, a proton substitutes AlBr3, and final hydrolysis of the reaction mixture gives rise to nitriles 2. It should be noted that this AlBr3-promoted hydroarylation of acetylene nitriles 1 (Scheme 1) is a novel transition-metal (Pd, Pt, Rh, etc.)-free stereoselective
  • [17]. Conclusion We have developed a novel transition-metal (Pd, Pt, Rh, etc.)-free procedure for the regio- and stereoselective hydroarylation of the carbon–carbon triple bond in 3-arylpropynenitriles by arenes under electrophilic activation by aluminum bromide AlBr3. The obtained 3,3
PDF
Album
Supp Info
Full Research Paper
Published 01 Nov 2021

Electrocatalytic C(sp3)–H/C(sp)–H cross-coupling in continuous flow through TEMPO/copper relay catalysis

  • Bin Guo and
  • Hai-Chao Xu

Beilstein J. Org. Chem. 2021, 17, 2650–2656, doi:10.3762/bjoc.17.178

Graphical Abstract
  • transition-metal electrocatalysis [33][34][35][36][37][38][39], transition-metal electrocatalysis in continuous flow remains underexplored [40]. With our continued interests in transition-metal electrocatalysis [41][42] and continuous-flow electrosynthesis [43][44][45][46][47][48], we report herein the
  • electrochemical microreactors can be a viable tool for developing efficient transition-metal electrocatalysis. C(sp3)–H alkynylation of tetrahydroisoquinolines. L* = chiral ligand. TEMPO = 2,2,6,6-tetramethylpiperidine 1-oxyl. DDQ = 2,3-dichloro-5,6-dicyano-1,4-benzoquinone. BPO = benzoyl peroxide. Substrate
PDF
Album
Supp Info
Letter
Published 28 Oct 2021

Visible-light-mediated copper photocatalysis for organic syntheses

  • Yajing Zhang,
  • Qian Wang,
  • Zongsheng Yan,
  • Donglai Ma and
  • Yuguang Zheng

Beilstein J. Org. Chem. 2021, 17, 2520–2542, doi:10.3762/bjoc.17.169

Graphical Abstract
  • ; however, they suffer from relatively poor photostability [14][15][16]. Transition-metal-photoredox catalysts, such as ruthenium and iridium polypyridyl complexes, exhibit high redox potentials, long excited state lifetimes, and strong absorption [17][18][19][20]. However, high cost and their scarcity
PDF
Album
Review
Published 12 Oct 2021

Direct C(sp3)–H allylation of 2-alkylpyridines with Morita–Baylis–Hillman carbonates via a tandem nucleophilic substitution/aza-Cope rearrangement

  • Siyu Wang,
  • Lianyou Zheng,
  • Shutao Wang,
  • Shulin Ning,
  • Zhuoqi Zhang and
  • Jinbao Xiang

Beilstein J. Org. Chem. 2021, 17, 2505–2510, doi:10.3762/bjoc.17.167

Graphical Abstract
  • acetamides and acetates catalyzed synergistically by a metal acyclic iridium complex and a chiral Cu(I) complex [19]. Besides transition-metal-catalyzed allylic substitution reactions, Lewis-base-catalyzed allylic functionalizations using Morita−Baylis−Hillman (MBH) adducts as electrophilic allylic
  • demonstrated a direct C(sp3)–H allylic alkylation reaction of 2-alkylpyridines with MBH carbonates with mild and simple operation. The process does not need either a base or a transition metal catalyst. The mechanism of this reaction was envisioned involving a tandem SN2’ type nucleophilic substitution
PDF
Album
Supp Info
Letter
Published 01 Oct 2021

Copper-catalyzed monoselective C–H amination of ferrocenes with alkylamines

  • Zhen-Sheng Jia,
  • Qiang Yue,
  • Ya Li,
  • Xue-Tao Xu,
  • Kun Zhang and
  • Bing-Feng Shi

Beilstein J. Org. Chem. 2021, 17, 2488–2495, doi:10.3762/bjoc.17.165

Graphical Abstract
  • ][10][11][12]. However, the above protocols generally proceeded under harsh conditions that led to poor functional group tolerance and generated stoichiometric amounts of waste. Thus far, the transition-metal-catalyzed C–H functionalization strategy has innovated the way to producing ferrocene
  • preparation of ferrocene–drug conjugates effectively. Mechanistic studies indicated that the C–H activation step was the rate-determining step. 3d-Transition-metal-catalyzed C–H functionalization to access functionalized ferrocenes. Scope of ferrocenes with morpholine. Scope of various amines with 1a
PDF
Album
Supp Info
Letter
Published 28 Sep 2021

Recent advances in the tandem annulation of 1,3-enynes to functionalized pyridine and pyrrole derivatives

  • Yi Liu,
  • Puying Luo,
  • Yang Fu,
  • Tianxin Hao,
  • Xuan Liu,
  • Qiuping Ding and
  • Yiyuan Peng

Beilstein J. Org. Chem. 2021, 17, 2462–2476, doi:10.3762/bjoc.17.163

Graphical Abstract
  • condensation of α-halogenated carbonyl compounds, β-dicarbonyl compounds and amines; and iv) the latest developed multicomponent tandem reactions and transition metal-catalyzed coupling reactions [30][31][32][33][34][35][36][37][38][39]. Recently, substantial achievements have been made using azides as a
  • synthesis [47]. Further, the Liu group reviewed the synthesis of allenes via transition metal-catalyzed 1,4-functionalizations of unactivated 1,3-enynes [48]. In this review, we will highlight the recent advances in the tandem annulation reactions of 1,3-enyne structural motifs for the construction of
PDF
Album
Review
Published 22 Sep 2021

Advances in mercury(II)-salt-mediated cyclization reactions of unsaturated bonds

  • Sumana Mandal,
  • Raju D. Chaudhari and
  • Goutam Biswas

Beilstein J. Org. Chem. 2021, 17, 2348–2376, doi:10.3762/bjoc.17.153

Graphical Abstract
  • chemists. Many transition-metal-salt-mediated cyclizations are reported in literature. Hg(II) salts have been successfully employed in cyclizations to form complex heterocyclic and carbocyclic structures that are impossible to synthesize with other transition metal salts. In this review, we have summarized
  • transition metal reagents has found considerable applications in organic synthesis [1][2][3][4] and has radically changed the realm of chemical science. It also provides a powerful tool for the construction of complex molecular frameworks [5][6][7]. A plethora of reviews involving transition metals such as
  • establishing this fact [26][27][28][29]. However, the main drawback of Hg(II) salts, as compared to other transition metal salts, is their increased toxicity [30][31]. Hg(II) salts on the other hand, are very cheap in comparison to other transition metal salts (Table 1) and one of the soft Lewis acids of the
PDF
Album
Review
Published 09 Sep 2021

Synthesis of phenanthridines via a novel photochemically-mediated cyclization and application to the synthesis of triphaeridine

  • Songeziwe Ntsimango,
  • Kennedy J. Ngwira,
  • Moira L. Bode and
  • Charles B. de Koning

Beilstein J. Org. Chem. 2021, 17, 2340–2347, doi:10.3762/bjoc.17.152

Graphical Abstract
  • , such as ionic liquid- and transition metal-catalyzed and other metal-free transformations [1]. A strategically diverse route to phenanthridines involves intramolecular cyclization of biaryl oximes, allowing for the formation of a new C–N bond. Such a strategy was explored by Deb and Yoshikai in the Fe
PDF
Album
Supp Info
Full Research Paper
Published 08 Sep 2021

A visible-light-induced, metal-free bis-arylation of 2,5-dichlorobenzoquinone

  • Pieterjan Winant and
  • Wim Dehaen

Beilstein J. Org. Chem. 2021, 17, 2315–2320, doi:10.3762/bjoc.17.149

Graphical Abstract
  • precursor, potentially leading to both regioisomers and unwanted side products, complicating purification. As a result, accounts of bis-arylation using radical chemistry are scarce and report very low yields [29][30][31][32]. While transition-metal catalysis is a viable strategy, it is often based on
PDF
Album
Supp Info
Full Research Paper
Published 06 Sep 2021

Photoredox catalysis in nickel-catalyzed C–H functionalization

  • Lusina Mantry,
  • Rajaram Maayuri,
  • Vikash Kumar and
  • Parthasarathy Gandeepan

Beilstein J. Org. Chem. 2021, 17, 2209–2259, doi:10.3762/bjoc.17.143

Graphical Abstract
  • developments in the field of photoredox nickel-catalyzed C‒H functionalization reactions with a range of applications until summer 2021. Keywords: C–H activation; functionalization; nickel; photocatalysts; photoredox; visible light; Introduction During the last decades, transition-metal-catalyzed
  • transformations have become one of the most reliable and basic tools for designing and manufacturing biologically relevant molecules and functional materials [1][2][3][4]. The formation of highly chemo-, regio-, and stereoselective products with excellent yields is the key reason for transition-metal catalysis as
  • transition-metal-catalyzed direct allylation of unactivated C–H bonds is considered as the prevalent strategy in organic synthesis. Despite significant advances were accomplished in the allylation of (hetero)aromatic and alkenyl C(sp2)‒H bonds [109], related reactions of C(sp3)–H are less explored [110][111
PDF
Album
Review
Published 31 Aug 2021

Transition-metal-free intramolecular Friedel–Crafts reaction by alkene activation: A method for the synthesis of some novel xanthene derivatives

  • Tülay Yıldız,
  • İrem Baştaş and
  • Hatice Başpınar Küçük

Beilstein J. Org. Chem. 2021, 17, 2203–2208, doi:10.3762/bjoc.17.142

Graphical Abstract
  • of their important biological and fluorescent uses. To summarize the main syntheses of these studies: in particular, transition metal-catalyzed cascade benzylation–cyclization [17], cyclization of polycyclic aryl triflate esters [18], reaction of β-naphthol and aldehydes [19][20] or inter- or
  • organometallic chemistry and using transition metal catalysts, which need expensive and toxic chemicals. With the increasing interest in these methods, new organocatalysts and reagents that are less toxic, easier to use, readily accessible, and cheap have been developed [37]. In particular, the synthesis of
  • arenes using the FCA methods with π-activated alcohols and organocatalysts has begun to be preferred over using conventional reagents, such as organohalogens and transition metal catalysts, which are toxic and require working under harsher conditions [38]. After these developments, the intramolecular FCA
PDF
Album
Supp Info
Full Research Paper
Published 30 Aug 2021

Catalyzed and uncatalyzed procedures for the syntheses of isomeric covalent multi-indolyl hetero non-metallides: an account

  • Ranadeep Talukdar

Beilstein J. Org. Chem. 2021, 17, 2102–2122, doi:10.3762/bjoc.17.137

Graphical Abstract
  • could be attributed to the facile orbital interactions of the σ* orbital of silicon and the π* orbital of the butadiene unit, which overall lowers the energy of the LUMO [51][52]. Known previously with expensive transition-metal catalyst (Ru) [53], Grubbs demonstrated the first KOt-Bu-catalyzed C2–H
  • only, thus stating the requirement of acid for this Fischer indole synthesis. Elemental sulfur has also been utilized in preparing bis(indol-3-yl)sulfides under transition-metal compound catalyzed spontaneous oxidation of the central chalcogen atom. Such reactions were carried out by Shibahara (2014
  • with 5-iodoindole (182) in the presence of thiourea and a recyclable CuO nanoparticle catalyst (Scheme 26) [116]. This heterogeneous catalysis strategy bypasses the use of unpleasant aryl thiols, which are generally coupled with other aryl halides in the presence of transition-metal catalysts for
PDF
Album
Review
Published 19 Aug 2021

Asymmetric organocatalyzed synthesis of coumarin derivatives

  • Natália M. Moreira,
  • Lorena S. R. Martelli and
  • Arlene G. Corrêa

Beilstein J. Org. Chem. 2021, 17, 1952–1980, doi:10.3762/bjoc.17.128

Graphical Abstract
  • synthesis of biologically relevant coumarins in aqueous medium [21]. Catalysis is one of the fundamental pillars of green chemistry [22], and the transition-metal-catalyzed synthesis of coumarins has been reviewed by Sharma et al. [23]. More recently, Kanchana et al. published an account on the palladium
PDF
Album
Review
Published 03 Aug 2021

On the application of 3d metals for C–H activation toward bioactive compounds: The key step for the synthesis of silver bullets

  • Renato L. Carvalho,
  • Amanda S. de Miranda,
  • Mateus P. Nunes,
  • Roberto S. Gomes,
  • Guilherme A. M. Jardim and
  • Eufrânio N. da Silva Júnior

Beilstein J. Org. Chem. 2021, 17, 1849–1938, doi:10.3762/bjoc.17.126

Graphical Abstract
  • twentieth most abundant element and the sixth most abundant transition metal in Earth’s crust. Rarely encountered in its metallic form, vanadium exists in oxidation states ranging from +5 to −3, including the four adjacent states +2 to +5 in aqueous solutions, and usually presents 4, 5 or 6 coordination
  • in a cheaper way leading to an easier access of currently expensive treatments to the general population. Chromium-catalyzed C–H activation Chromium is a relatively abundant transition metal that has been used for oxidative reactions, including cross-coupling and carbon–carbon bond formation
  • could help expanding the currently available methods in organic synthesis. Manganese-catalyzed C–H activation Manganese is the twelfth most abundant element in the Earth’s crust and the third most abundant transition metal after iron and titanium [126]. The valence electron configuration of elemental
PDF
Album
Review
Published 30 Jul 2021

Sustainable manganese catalysis for late-stage C–H functionalization of bioactive structural motifs

  • Jongwoo Son

Beilstein J. Org. Chem. 2021, 17, 1733–1751, doi:10.3762/bjoc.17.122

Graphical Abstract
  • biologically active small molecules and complex peptides. Keywords: bioactive molecules; 3d transition metals; late-stage functionalization; manganese catalyst; sustainable catalysis; Introduction Manganese, a 3d transition metal, allows for a potentially ideal sustainable catalytic system because of the
  • ® (antiplatelet), Gleevec® (anticancer), and augmentin (antibiotic), also contain the benzylic amine motif. Therefore, C–H amination is synthetically important for the diversification of biologically active molecules. Transition metal catalysis has set the stage for C–H amination processes in organic syntheses
  • [49]. To date, there are several examples of late-stage C–H amination methods that utilize iron and manganese as 3d transition metal catalysts [50][51][52]. However, intermolecular benzylic C–H amination has rarely been explored due to the challenges associated with selectivity and reactivity. In 2018
PDF
Album
Review
Published 26 Jul 2021

Cerium-photocatalyzed aerobic oxidation of benzylic alcohols to aldehydes and ketones

  • Girish Suresh Yedase,
  • Sumit Kumar,
  • Jessica Stahl,
  • Burkhard König and
  • Veera Reddy Yatham

Beilstein J. Org. Chem. 2021, 17, 1727–1732, doi:10.3762/bjoc.17.121

Graphical Abstract
  • reported methods require either specific nanoparticle catalysts [39][40][41][42] or the catalytic method is limited to electron-rich or electron-neutral benzylic alcohols [56]. An operationally simple method avoiding waste and potentially toxic transition-metal catalysts that is able to convert any
PDF
Album
Supp Info
Letter
Published 23 Jul 2021

Copper-mediated oxidative C−H/N−H activations with alkynes by removable hydrazides

  • Feng Xiong,
  • Bo Li,
  • Chenrui Yang,
  • Liang Zou,
  • Wenbo Ma,
  • Linghui Gu,
  • Ruhuai Mei and
  • Lutz Ackermann

Beilstein J. Org. Chem. 2021, 17, 1591–1599, doi:10.3762/bjoc.17.113

Graphical Abstract
  • -catalyzed C−H activations with the MHP auxiliary [41][42][43][44]. In continuation of studies on sustainable 3d transition metal-catalyzed C−H activation [41][42][43][44][45][46][47][48][49], we have now discovered a robust copper-promoted oxidative C−H/N−H functionalization with terminal alkynes (Figure 1d
  • (Cq), 129.3 (CH), 128.7 (CH), 127.3 (CH), 127.3 (CH), 126.5 (Cq), 123.8 (CH), 119.8 (CH), 114.3 (CH), 107.8 (CH), 106.4 (CH), 36.7 (CH3); HRESIMS (m∕z): [M + H]+ calcd for C21H18N3O, 328.1444; found, 328.1439. Assembly of 3-methyleneisoindolin-1-one via 3d transition metal-mediated/catalyzed oxidative
PDF
Album
Supp Info
Full Research Paper
Published 08 Jul 2021
Other Beilstein-Institut Open Science Activities