Search results

Search for "electrophile" in Full Text gives 290 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

N-Propargylamines: versatile building blocks in the construction of thiazole cores

  • S. Arshadi,
  • E. Vessally,
  • L. Edjlali,
  • R. Hosseinzadeh-Khanmiri and
  • E. Ghorbani-Kalhor

Beilstein J. Org. Chem. 2017, 13, 625–638, doi:10.3762/bjoc.13.61

Graphical Abstract
  • domino reactions of N-propargylamines 20 with isothiocyanates 21 developed by Castagnolo. Electrophile-mediated cyclization of N-propargylthioureas 55.
PDF
Album
Review
Published 30 Mar 2017

Effect of the ortho-hydroxy group of salicylaldehyde in the A3 coupling reaction: A metal-catalyst-free synthesis of propargylamine

  • Sujit Ghosh,
  • Kinkar Biswas,
  • Suchandra Bhattacharya,
  • Pranab Ghosh and
  • Basudeb Basu

Beilstein J. Org. Chem. 2017, 13, 552–557, doi:10.3762/bjoc.13.53

Graphical Abstract
  • activate the terminal acetylene primarily, which then undergoes a nucleophilic addition to the iminium electrophile generated from the aldehyde and the amine. Among different transition metals, copper metal has been mostly explored as the catalyst to activate the terminal acetylene, though there is a
  • this case, activation of the Csp–COOH occurs via decarboxylation followed by the coupling with an iminium electrophile to produce the propargylamine. Although the strategy is interesting, functionalized acetylene carboxylic acids are difficultly accessible and the reaction is less 'atom economic
PDF
Album
Supp Info
Full Research Paper
Published 16 Mar 2017

Structure–efficiency relationships of cyclodextrin scavengers in the hydrolytic degradation of organophosphorus compounds

  • Sophie Letort,
  • Michaël Bosco,
  • Benedetta Cornelio,
  • Frédérique Brégier,
  • Sébastien Daulon,
  • Géraldine Gouhier and
  • François Estour

Beilstein J. Org. Chem. 2017, 13, 417–427, doi:10.3762/bjoc.13.45

Graphical Abstract
  • the reaction with the propyl analog 8 (50% versus 35%), but suffered from a slightly lower regioselectivity. In fact, 4% of the 3-monosubstituted regioisomer of 9 was also formed, whereas less than 1% of the 3-monofunctionalized regioisomer of 10 was observed for the reaction with electrophile 8. Once
  • the first group was introduced in position 2, the substitution reaction at O-3 on the adjacent unit A was performed. Due to the lower reactivity of this alcohol group, an excess of base and electrophile was required for this step. In addition, the presence of the sterically hindered trityl-protected
  • decreased the yield of scavenger 3. The introduction of the methyl iodobenzoate substituent at O-3 was conducted starting from monohydroxy compound 15 [34]. After reaction with electrophile 12, compound 4 was obtained through oxidation and hydrolysis of intermediate 16 (Scheme 2) using the same experimental
PDF
Album
Supp Info
Full Research Paper
Published 06 Mar 2017

Decarboxylative and dehydrative coupling of dienoic acids and pentadienyl alcohols to form 1,3,6,8-tetraenes

  • Ghina’a I. Abu Deiab,
  • Mohammed H. Al-Huniti,
  • I. F. Dempsey Hyatt,
  • Emma E. Nagy,
  • Kristen E. Gettys,
  • Sommayah S. Sayed,
  • Christine M. Joliat,
  • Paige E. Daniel,
  • Rupa M. Vummalaneni,
  • Andrew T. Morehead Jr,
  • Andrew L. Sargent and
  • Mitchell P. Croatt

Beilstein J. Org. Chem. 2017, 13, 384–392, doi:10.3762/bjoc.13.41

Graphical Abstract
  • ], nitro [26][27], or alkyne [21][28][29][30][31][32], Scheme 1), or use an aryl carboxylate [33][34] which typically requires the assistance of silver or copper(I) salts for the decarboxylative step. It is rare to use a pentadienyl electrophile [35], or to have a diene or simple alkene adjacent to the
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2017

The reductive decyanation reaction: an overview and recent developments

  • Jean-Marc R. Mattalia

Beilstein J. Org. Chem. 2017, 13, 267–284, doi:10.3762/bjoc.13.30

Graphical Abstract
  • described in Scheme 1, the nature of the medium and the substrate strongly influence the course of the reaction. Then, in the absence of a proton source, the organolithium intermediate can cyclize or react with an electrophile giving the expected coupling products [23][24][25][26][27]. Metal dissolving
PDF
Album
Review
Published 13 Feb 2017

Highly bulky and stable geometry-constrained iminopyridines: Synthesis, structure and application in Pd-catalyzed Suzuki coupling of aryl chlorides

  • Yi Lai,
  • Zhijian Zong,
  • Yujie Tang,
  • Weimin Mo,
  • Nan Sun,
  • Baoxiang Hu,
  • Zhenlu Shen,
  • Liqun Jin,
  • Wen-hua Sun and
  • Xinquan Hu

Beilstein J. Org. Chem. 2017, 13, 213–221, doi:10.3762/bjoc.13.24

Graphical Abstract
  • up to 325 °C. With these sterically hindered iminopyridine–palladium complexes Pd1 to Pd5 in hand, we firstly investigated their catalytic activity directly in Suzuki cross-coupling reactions with chlorobenzene as the electrophile. The reactions were performed under the previously reported conditions
PDF
Album
Supp Info
Full Research Paper
Published 03 Feb 2017

New approaches to organocatalysis based on C–H and C–X bonding for electrophilic substrate activation

  • Pavel Nagorny and
  • Zhankui Sun

Beilstein J. Org. Chem. 2016, 12, 2834–2848, doi:10.3762/bjoc.12.283

Graphical Abstract
  • of organocatalysis. While traditional hydrogen bond donors containing N–H and O–H moieties have been effectively used for electrophile activation, activation based on other types of non-covalent interactions is less common. This mini review highlights recent progress in developing and exploring new
  • organic catalysts for electrophile activation through the formation of C–H hydrogen bonds and C–X halogen bonds. Keywords: C–H hydrogen bond; counteranion activation; electrophile activation; halogen bond donor; hydrogen bond donor; organocatalysis; Review Introduction Over the past century chemists
  • the near future. Electrophile Activation by Hydrogen Bond Donors [1][2][3][4][5][6][7][8][9][10][11][12][13][14][15][16]. Early examples of C–H hydrogen bonds and their recent use in supramolecular chemistry [18][19][32][33][34]. Design of 1,2,3-triazole-based catalysts for trityl group transfer
PDF
Album
Review
Published 23 Dec 2016

A direct method for the N-tetraalkylation of azamacrocycles

  • Andrew J. Counsell,
  • Angus T. Jones,
  • Matthew H. Todd and
  • Peter J. Rutledge

Beilstein J. Org. Chem. 2016, 12, 2457–2461, doi:10.3762/bjoc.12.239

Graphical Abstract
  • high levels of over-alkylation to quaternary amine salts observed. Using exactly four equivalents of the electrophile increased the yield to 30%, while adopting a modified Finkelstein procedure by adding catalytic sodium iodide gave a modest further increase in yield, to 39%. Adapting the Tsukube
PDF
Album
Supp Info
Letter
Published 18 Nov 2016

Chiral ammonium betaine-catalyzed asymmetric Mannich-type reaction of oxindoles

  • Masahiro Torii,
  • Kohsuke Kato,
  • Daisuke Uraguchi and
  • Takashi Ooi

Beilstein J. Org. Chem. 2016, 12, 2099–2103, doi:10.3762/bjoc.12.199

Graphical Abstract
  • reduced diastereoselectivity (Table 2, entries 1–4). Sterically demanding 2-tolualdehyde-derived imine 3f served as a good electrophile and the corresponding Mannich adduct 4af was isolated as virtually a single stereoisomer (Table 2, entry 5). 3-Thiophenyl aldimine 3g was also well tolerated, but a
PDF
Album
Supp Info
Letter
Published 28 Sep 2016

p-Nitrophenyl carbonate promoted ring-opening reactions of DBU and DBN affording lactam carbamates

  • Madhuri Vangala and
  • Ganesh P Shinde

Beilstein J. Org. Chem. 2016, 12, 2086–2092, doi:10.3762/bjoc.12.197

Graphical Abstract
  • nucleophilicity of DBU/DBN and highly electrophile p-nitrophenyl carbonate derivatives. The reactions proceeded even at room temperature and displayed the nucleophilic addition and substitution with the p-nitrophenyl carbonate derivative of 10-bromodecanol. These caprolactam derivatives may find application in
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2016

Ionic liquids as transesterification catalysts: applications for the synthesis of linear and cyclic organic carbonates

  • Maurizio Selva,
  • Alvise Perosa,
  • Sandro Guidi and
  • Lisa Cattelan

Beilstein J. Org. Chem. 2016, 12, 1911–1924, doi:10.3762/bjoc.12.181

Graphical Abstract
  • nucleophile and the electrophile. Scheme 20 shows the proposed mechanisms for the exemplar transesterification of a generic alcohol ROH with DMC using [P8881][MeOCO2] as catalyst. The catalytic cooperative activation also explains the selective formation of cyclic or linear products of Scheme 20, without the
  • catalysis by the ionic liquid. This type of ambiphilic catalysis is characterized by the nucleophile and the electrophile both being activated respectively by the anion and by the cation of the ionic liquid. Thirdly, organic carbonates – used as feedstocks or produced by transesterification – are valuable
PDF
Album
Review
Published 26 Aug 2016

Practical synthetic strategies towards lipophilic 6-iodotetrahydroquinolines and -dihydroquinolines

  • David R. Chisholm,
  • Garr-Layy Zhou,
  • Ehmke Pohl,
  • Roy Valentine and
  • Andrew Whiting

Beilstein J. Org. Chem. 2016, 12, 1851–1862, doi:10.3762/bjoc.12.174

Graphical Abstract
  • in Supporting Information File 1). The N-iPr product 15a was isolated in only 3% yield. This, therefore, indicates that the electrophile reacts faster with the oxide anion of 13. Repeating the reaction with 15-crown-5 to limit the effect of the sodium cation did not appreciably effect the product
PDF
Album
Supp Info
Full Research Paper
Published 16 Aug 2016

Reactions of N,3-diarylpropiolamides with arenes under superelectrophilic activation: synthesis of 4,4-diaryl-3,4-dihydroquinolin-2(1H)-ones and their derivatives

  • Larisa Yu. Gurskaya,
  • Diana S. Belyanskaya,
  • Dmitry S. Ryabukhin,
  • Denis I. Nilov,
  • Irina A. Boyarskaya and
  • Aleksander V. Vasilyev

Beilstein J. Org. Chem. 2016, 12, 950–956, doi:10.3762/bjoc.12.93

Graphical Abstract
  • the large charge on C2 of the protonated carbonyl groups and its substantial contribution into LUMO (Figure 2), this carbon is not reactive, probably, due to steric reasons. A comparison of the electrophilicity indices ω of C1 and D1 (Table 2) revealed that the former is stronger electrophile. Also
PDF
Album
Supp Info
Full Research Paper
Published 11 May 2016

1H-Imidazol-4(5H)-ones and thiazol-4(5H)-ones as emerging pronucleophiles in asymmetric catalysis

  • Antonia Mielgo and
  • Claudio Palomo

Beilstein J. Org. Chem. 2016, 12, 918–936, doi:10.3762/bjoc.12.90

Graphical Abstract
  • enolate or equivalent is fixed due to their cyclic nature, thus facilitating the control of the stereoselectivity; iii) they are substituted at the α-position of the carbonyl and therefore, after reaction with an electrophile, a tetrasubstituted stereocenter is created and, iv) the resulting adducts can
  • being necessary for catalyst activity (Figure 4a) [87][88][89]. In 2010 Zhong proposed that the presence of the ortho C–H bond of the aryl group could be the key for success because it could participate together with the thiourea function in the activation of the electrophile [90]. This proposal was in
PDF
Album
Review
Published 09 May 2016

Asymmetric α-amination of 3-substituted oxindoles using chiral bifunctional phosphine catalysts

  • Qiao-Wen Jin,
  • Zhuo Chai,
  • You-Ming Huang,
  • Gang Zou and
  • Gang Zhao

Beilstein J. Org. Chem. 2016, 12, 725–731, doi:10.3762/bjoc.12.72

Graphical Abstract
  • face of the enolate, driving the electrophile to attack from the Si face. Conclusion In summary, we have realized enantioselective α-aminations of 3-substitued oxindoles with azodicarboxylates by using amino acid-derived bifunctional phosphine catalysts. These reactions afford a variety of chiral 2
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2016

Opportunities and challenges for direct C–H functionalization of piperazines

  • Zhishi Ye,
  • Kristen E. Gettys and
  • Mingji Dai

Beilstein J. Org. Chem. 2016, 12, 702–715, doi:10.3762/bjoc.12.70

Graphical Abstract
  • on the distal nitrogen atom is likely preventing this nitrogen from attacking the electrophile and triggers an elimination process which would yield a byproduct like 29. Of particular interest, when benzophenone (Ph2CO) was used to trap the α-lithiation product of N-Boc-N’-alkylpiperazines, in
  • -piperazine 57. In summary, promising progress has been made in the direct α-lithiation trapping of N-Boc-protected piperazines, including enantioselective versions. So far, these methods are limited by narrow electrophile scopes and often low enantioselectivities rendering further developments necessary
PDF
Album
Review
Published 13 Apr 2016

Supported bifunctional thioureas as recoverable and reusable catalysts for enantioselective nitro-Michael reactions

  • José M. Andrés,
  • Miriam Ceballos,
  • Alicia Maestro,
  • Isabel Sanz and
  • Rafael Pedrosa

Beilstein J. Org. Chem. 2016, 12, 628–635, doi:10.3762/bjoc.12.61

Graphical Abstract
  • nitro-Michael addition; supported catalysts; thioureas; Introduction The use of chiral bifunctional thioureas that allow the simultaneous activation of a electrophile, by hydrogen bonding, and a nucleophile, by deprotonation, plays a major role in the stereoselective formation of C–C bonds in different
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2016

The aminoindanol core as a key scaffold in bifunctional organocatalysts

  • Isaac G. Sonsona,
  • Eugenia Marqués-López and
  • Raquel P. Herrera

Beilstein J. Org. Chem. 2016, 12, 505–523, doi:10.3762/bjoc.12.50

Graphical Abstract
  • % ee) (Scheme 10b) [39]. Based on the experimental results, the authors proposed a bifunctional mode of activation (TS7), where the electrophile is fixed and activated by the thiourea framework through several hydrogen bonds. At the same time, the indole is oriented to attack the Re face of the Michael
  • reaction pathway based on previously reported transition states (Figure 6). The catalyst ent-4 would activate and fix the electrophile through several hydrogen-bonding interactions with the NH groups of the thiourea. Simultaneously, the hydroxy group would be involved in the activation of the nucleophile
PDF
Album
Review
Published 14 Mar 2016

(Thio)urea-mediated synthesis of functionalized six-membered rings with multiple chiral centers

  • Giorgos Koutoulogenis,
  • Nikolaos Kaplaneris and
  • Christoforos G. Kokotos

Beilstein J. Org. Chem. 2016, 12, 462–495, doi:10.3762/bjoc.12.48

Graphical Abstract
  • ethyl malonate, producing the active nucleophile, while the thiourea group activates the electrophile (Scheme 6). The above catalytic reaction provided products with yields up to 99%, dr up to 93:7 and ee up to 93%. Carter and co-worker utilized a similar primary amine-thiourea, organocatalyst 11, in an
  • of the nucleophile, making the diene more nucleophilic, and lowers the LUMO of the electrophile, making the dienophile more electrophilic (Scheme 19), thus the catalyst acts via a bifunctional mode. All these interactions are developed in the transition state through hydrogen-bonding, which controls
  • same nucleophile 81, Wang and his group combined it with β,γ-unsaturated α-ketoesters 87, as the electrophile, catalyzed by bifunctional indane-derived thiourea 88, to produce derivatives of 3,4-dihydro-2H-pyran 89 (Scheme 30) [49]. This reaction sequence involved a Michael reaction, followed by a
PDF
Album
Review
Published 10 Mar 2016

Recent advances in N-heterocyclic carbene (NHC)-catalysed benzoin reactions

  • Rajeev S. Menon,
  • Akkattu T. Biju and
  • Vijay Nair

Beilstein J. Org. Chem. 2016, 12, 444–461, doi:10.3762/bjoc.12.47

Graphical Abstract
  • carbonyl electrophile to afford α-hydroxy ketones (benzoins). It is a 100% atom-economic process wherein a new stereocentre is produced. The reaction is sometimes referred to as acyloin condensation to encompass reactions of aliphatic aldehydes. The assembly of two molecules of the same aldehyde is known
  • aldehydes react with an aza electrophile. Imines possessing an electron-withdrawing N-substituent constitute the most commonly used aza electrophile and the reaction affords an α-aminocarbonyl compound as the product. The NHC-mediated addition of aldehyde-derived acyl anions to nitroso compounds leading to
  • -2-amino3-hydroxyindanones is catalysed by NHC 31. The imine electrophile is generated in situ from α-sulfonyl-N-Boc amine 33 (Scheme 19). Initial cross-aza-benzoin reaction of one of the aldehyde functionalities with the imine is followed by an intramolecular aldol reaction to furnish the indanone
PDF
Album
Correction
Review
Published 09 Mar 2016

Cupreines and cupreidines: an established class of bifunctional cinchona organocatalysts

  • Laura A. Bryant,
  • Rossana Fanelli and
  • Alexander J. A. Cobb

Beilstein J. Org. Chem. 2016, 12, 429–443, doi:10.3762/bjoc.12.46

Graphical Abstract
  • ]. In this classic process, it was hypothesized that the 6’-OH group was critical in directing the incoming aldehyde electrophile (see Scheme 1 box). Soon after, Shi and co-worker demonstrated the use of β-ICPD in the reaction of imines 5 with methyl vinyl ketone (MVK, 6) using the same catalyst (Scheme
  • processes, the tertiary amine adds into the conjugate ester as with the MBH reaction, but instead of the resulting C3-ammonium enolate reacting with an electrophile, an E1cB elimination of the carbonate occurs to generate another conjugated system. This can then undergo an attack by a Michael donor
  • hydroxydiketopiperizine system 56 with very high diasterecontrol. Once again, the authors invoke a critical role for the 6’-OH group in the co-ordination and activation of the electrophile in these processes. Cyclopropanations Not unrelated to the Michael addition in a mechanistic sense, is the asymmetric
PDF
Album
Review
Published 07 Mar 2016

Organocatalytic asymmetric Henry reaction of 1H-pyrrole-2,3-diones with bifunctional amine-thiourea catalysts bearing multiple hydrogen-bond donors

  • Ming-Liang Zhang,
  • Deng-Feng Yue,
  • Zhen-Hua Wang,
  • Yuan Luo,
  • Xiao-Ying Xu,
  • Xiao-Mei Zhang and
  • Wei-Cheng Yuan

Beilstein J. Org. Chem. 2016, 12, 295–300, doi:10.3762/bjoc.12.31

Graphical Abstract
  • sites, have captured tremendous attention in particular due to their unique ability of the simultaneous activation of the nucleophile and the electrophile in the same transition state [7][8][9][10][11]. Among them, chiral bifunctional thioureas bearing multiple hydrogen-bond donors have been
PDF
Album
Supp Info
Full Research Paper
Published 16 Feb 2016

A convergent, umpoled synthesis of 2-(1-amidoalkyl)pyridines

  • Tarn C. Johnson and
  • Stephen P. Marsden

Beilstein J. Org. Chem. 2016, 12, 1–4, doi:10.3762/bjoc.12.1

Graphical Abstract
  • -amidoalkyl)pyridines that arises from a formally ‘umpoled’ coupling of an α-(amidoalkyl) anion equivalent with a pyridyl electrophile. Results and Discussion Reaction discovery Our research group has a longstanding interest in the synthesis of α,α-disubstituted amino acids [11][12][13][14][15], and in
  • pyridylamino acid 9 (Nu = OH) [22][23]. After some minor process optimisation, this product was isolated in 64% yield. We recognised that this constitutes a formally ‘umpoled’ [24] coupling of an α-amino- or amidoalkyl anion [25][26][27] with a pyridyl electrophile and hence would complement existing synthetic
PDF
Album
Supp Info
Letter
Published 04 Jan 2016

Enantioselective additions of copper acetylides to cyclic iminium and oxocarbenium ions

  • Jixin Liu,
  • Srimoyee Dasgupta and
  • Mary P. Watson

Beilstein J. Org. Chem. 2015, 11, 2696–2706, doi:10.3762/bjoc.11.290

Graphical Abstract
  • isoquinolinium ion 9, and found that improved yields and ee’s can be achieved using this substrate and a CuBr/Quinap catalyst, despite the fact that Quinap had proven inferior to Ph-Pybox in the CDC reaction (Scheme 4) [24]. With this new catalyst and electrophile, the catalyst loading, reaction temperature, and
PDF
Album
Review
Published 22 Dec 2015

Copper-catalyzed asymmetric conjugate addition of organometallic reagents to extended Michael acceptors

  • Thibault E. Schmid,
  • Sammy Drissi-Amraoui,
  • Christophe Crévisy,
  • Olivier Baslé and
  • Marc Mauduit

Beilstein J. Org. Chem. 2015, 11, 2418–2434, doi:10.3762/bjoc.11.263

Graphical Abstract
  • regiocontrol of the nucleophilic attack, which can occur at three different positions, at least. The regioselectivity outcome of the ACA reaction depends on many parameters, notably the metal/chiral ligand combination, the structure of the electrophile and the nature of the nucleophile. Figure 1 depicts the
PDF
Album
Review
Published 03 Dec 2015
Other Beilstein-Institut Open Science Activities