Search for "reductive elimination" in Full Text gives 171 result(s) in Beilstein Journal of Organic Chemistry.
Beilstein J. Org. Chem. 2013, 9, 1352–1382, doi:10.3762/bjoc.9.153
Graphical Abstract
Figure 1: Qualitative orbital diagram for a d8 metal in ML4 square-planar and ML3 T-shaped complexes.
Figure 2: Walsh diagram for the d-block of a d8 ML3 complex upon bending of one L–M–L angle.
Figure 3: Neutral Y-shaped Pt complex Y1 [15]. Angles are given in degrees.
Figure 4: General classification of T-shaped Pt(II) structures according to the fourth coordination site.
Figure 5: Hydride, boryl and borylene true T-shaped Pt(II) complexes.
Figure 6: NHC-based true T-shaped Pt(II) complexes.
Figure 7: Phosphine-based agostic T-shaped Pt(II) complexes. Compounds in brackets correspond with hydrido–al...
Figure 8: Phenylpyridine and NHC-based agostic T-shaped Pt(II) complexes.
Figure 9: Counteranion coordination in T-shaped Pt(II) complexes.
Figure 10: Phosphine-based solvento Pt(II) complexes.
Figure 11: Nitrogen-based solvento Pt(II) complexes.
Figure 12: Pincer-based solvento Pt(II) complexes.
Figure 13: Structure of the QM/MM optimized cisplatin–protein adduct [94].
Figure 14: NMR coupling constants used for the characterization of three-coordinate Pt(II) species.
Figure 15: The chemical formula of the complexes discussed in Table 2.
Scheme 1: Halogen abstraction from 1.
Scheme 2: Halogen abstraction from 2 forming the dicationic complex T3 [22].
Scheme 3: Hydrogenation of complexes A5a and A5b [39].
Scheme 4: Hydrogenation of complexes 3 and A5c [40].
Scheme 5: Intermolecular C–H bond activation from T5a [28].
Scheme 6: Protonation of complexes 4 [35,36].
Scheme 7: Cyclometalation of 5 [43].
Scheme 8: Protonation of 6.
Scheme 9: Reductive elimination of ethane from 7.
Scheme 10: Reductive elimination of methane from six-coordinate Pt(IV) complexes.
Scheme 11: Proposed dissociative mechanism for the fluxional motion of dmphen in [Pt(Me)(dmphen)(PR3)]+ comple...
Figure 16: Feasible interactions for unsaturated intermediates 11b (left) and 12b (right) during fluxional mot...
Scheme 12: Halogen abstraction from 13a,b and subsequent cyclometalation to yield complexes A5a,b [39].
Scheme 13: Proposed mechanism for the acid-catalyzed cyclometalation of 14 via intermediate 15 [41].
Scheme 14: Proposed mechanism for the formation of 19 [102].
Scheme 15: Cyclometalation of 20 via thioether dissociation [117].
Figure 17: Gibbs energy profile (in chloroform solvent) for the cyclometalation of 23 [120].
Scheme 16: Coordination of tmtu to 29 and subsequent C–H bond activation via three-coordinate species 31 and 32...
Scheme 17: Cyclometalation process of NHC-based Pt(II) complexes [28,44].
Scheme 18: Cyclometalation process of complex A9 [43].
Scheme 19: “Rollover” reaction of 38 and subsequent oligomerization [123].
Scheme 20: Proposed mechanism for the formation of cyclometalated species 44 [124].
Scheme 21: Self-assembling process of 45 by “rollover” reaction [126].
Scheme 22: “Rollover” reaction of A9. Energies (solvent) in kcal mol−1 [127].
Scheme 23: Proposed mechanisms for the “rollover” cyclometalation of 52 in gas-phase ion-molecule reactions [128].
Scheme 24: β-H elimination and 1,2-insertion equilibrium involving A1d and the subsequent generation of 57 [35].
Scheme 25: Proposed mechanism for thermolysis of 7b and 7c in benzene-d6 and cyclohexane-d12 solvents [101].
Scheme 26: β-H elimination process of A11a [28].
Scheme 27: Intermolecular C–H bond activation from 62 [95].
Scheme 28: Reductive elimination of methane from 65 followed by CD3CN coordination or C–D bond-activation proc...
Figure 18: DFT-optimized structures describing the κ2 (69, left) and κ3 (69’, right) coordination modes of [Pt...
Scheme 29: Intermolecular arene C–H bond activation from NHC-based complexes [28].
Figure 19: Energy profiles (in benzene solvent) for the benzene C–H bond activation from A11a, A11b, T5a and T...
Scheme 30: Intermolecular arene C–H bond activation from PNP-based complex 71 [12].
Scheme 31: Intermolecular C–H bond-activation by gas-phase ion-molecule reactions of 74 [7,142].
Scheme 32: Dihydrogen activation through complexes A5a, A5b [39], A5c [40] and S1a [54].
Scheme 33: Dihydrogen activation through complexes A7 and 16 [41]. For a: see Scheme 13.
Scheme 34: Br2 and I2 bond activations through complexes A11a and T5a [143].
Scheme 35: Detection and isolation of the Pt(III) complex 81a [143].
Scheme 36: Cl2 bond activation through complexes 82 and 83 [144].
Scheme 37: cis–trans Isomerization mechanism of the solvento Pt(II) complexes S5 [2,61].
Figure 20: Energy profiles for the isomerization of complexes [Pt(R)(PMe3)2(NCMe)]+ where R means Me (85a, red...
Figure 21: DFT-optimized structure of intermediate 86 [62]. Bond distances in angstrom and angles in degrees.
Scheme 38: Proposed dissociative ligand-substitution mechanism of cis-[Pt(R)2S2] complexes (87) [117].
Scheme 39: Proposed mechanisms for the ligand substitution of the dinuclear species 91 [146].
Beilstein J. Org. Chem. 2013, 9, 710–716, doi:10.3762/bjoc.9.81
Graphical Abstract
Scheme 1: Synthesis of substrates 1a–c.
Scheme 2: Synthesis of substrates 5a, 5c, 6a and 6c.
Scheme 3: Cyclization of substrate 5a and 5c.
Scheme 4: Proposed mechanism involving π-allylnickel formation.
Scheme 5: Cyclization of substrate 6a and 6c.
Scheme 6: Synthesis and carbometalations of 13.
Beilstein J. Org. Chem. 2013, 9, 278–302, doi:10.3762/bjoc.9.34
Graphical Abstract
Scheme 1: Variation of substrates for carbomagnesiation and carbozincation in this article.
Scheme 2: Copper-catalyzed arylmagnesiation and allylmagnesiation of alkynyl sulfone.
Scheme 3: Copper-catalyzed four-component reaction of alkynyl sulfoxide with alkylzinc reagent, diiodomethane...
Scheme 4: Rhodium-catalyzed reaction of aryl alkynyl ketones with arylzinc reagents.
Scheme 5: Allylmagnesiation of propargyl alcohol, which provides the anti-addition product.
Scheme 6: Negishi’s total synthesis of (Z)-γ-bisabolene by allylmagnesiation.
Scheme 7: Iron-catalyzed syn-carbomagnesiation of propargylic or homopropargylic alcohol.
Scheme 8: Mechanism of iron-catalyzed carbomagnesiation.
Scheme 9: Regio- and stereoselective manganese-catalyzed allylmagnesiation.
Scheme 10: Vinylation and alkylation of arylacetylene-bearing hydroxy group.
Scheme 11: Arylmagnesiation of (2-pyridyl)silyl-substituted alkynes.
Scheme 12: Synthesis of tamoxifen from 2g.
Scheme 13: Controlling regioselectivity of carbocupration by attaching directing groups.
Scheme 14: Rhodium-catalyzed carbozincation of ynamides.
Scheme 15: Synthesis of 4-pentenenitriles through carbometalation followed by aza-Claisen rearrangement.
Scheme 16: Uncatalyzed carbomagnesiation of cyclopropenes.
Scheme 17: Iron-catalyzed carbometalation of cyclopropenes.
Scheme 18: Enantioselective carbozincation of cyclopropenes.
Scheme 19: Copper-catalyzed facially selective carbomagnesiation.
Scheme 20: Arylmagnesiation of cyclopropenes.
Scheme 21: Enantioselective methylmagnesiation of cyclopropenes without catalyst.
Scheme 22: Copper-catalyzed carbozincation.
Scheme 23: Enantioselective ethylzincation of cyclopropenes.
Scheme 24: Nickel-catalyzed ring-opening aryl- and alkenylmagnesiation of a methylenecyclopropane.
Scheme 25: Reaction mechanism.
Scheme 26: Nickel-catalyzed carbomagnesiation of arylacetylene and dialkylacetylene.
Scheme 27: Nickel-catalyzed carbozincation of arylacetylenes and its application to the synthesis of tamoxifen....
Scheme 28: Bristol-Myers Squibb’s nickel-catalyzed phenylzincation.
Scheme 29: Iron/NHC-catalyzed arylmagnesiation of aryl(alkyl)acetylene.
Scheme 30: Iron/copper-cocatalyzed alkylmagnesiation of aryl(alkyl)acetylenes.
Scheme 31: Iron-catalyzed hydrometalation.
Scheme 32: Iron/copper-cocatalyzed arylmagnesiation of dialkylacetylenes.
Scheme 33: Chromium-catalyzed arylmagnesiation of alkynes.
Scheme 34: Cobalt-catalyzed arylzincation of alkynes.
Scheme 35: Cobalt-catalyzed formation of arylzinc reagents and subsequent arylzincation of alkynes.
Scheme 36: Cobalt-catalyzed benzylzincation of dialkylacetylene and aryl(alkyl)acetylenes.
Scheme 37: Synthesis of estrogen receptor antagonist.
Scheme 38: Cobalt-catalyzed allylzincation of aryl-substituted alkynes.
Scheme 39: Silver-catalyzed alkylmagnesiation of terminal alkyne.
Scheme 40: Proposed mechanism of silver-catalyzed alkylmagnesiation.
Scheme 41: Zirconium-catalyzed ethylzincation of terminal alkenes.
Scheme 42: Zirconium-catalyzed alkylmagnesiation.
Scheme 43: Titanium-catalyzed carbomagnesiation.
Scheme 44: Three-component coupling reaction.
Scheme 45: Iron-catalyzed arylzincation reaction of oxabicyclic alkenes.
Scheme 46: Reaction of allenyl ketones with organomagnesium reagent.
Scheme 47: Regio- and stereoselective reaction of a 2,3-allenoate.
Scheme 48: Three-component coupling reaction of 1,2-allenoate, organozinc reagent, and ketone.
Scheme 49: Proposed mechanism for a rhodium-catalyzed arylzincation of allenes.
Scheme 50: Synthesis of skipped polyenes by iterative arylzincation/allenylation reaction.
Scheme 51: Synthesis of 1,4-diorganomagnesium compound from 1,2-dienes.
Scheme 52: Synthesis of tricyclic compounds.
Scheme 53: Manganese-catalyzed allylmagnesiation of allenes.
Scheme 54: Copper-catalyzed alkylmagnesiation of 1,3-dienes and 1,3-enynes.
Scheme 55: Chromium-catalyzed methallylmagnesiation of 1,6-diynes.
Scheme 56: Chromium-catalyzed allylmagnesiation of 1,6-enynes.
Scheme 57: Proposed mechanism of the chromium-catalyzed methallylmagnesiation.
Beilstein J. Org. Chem. 2012, 8, 2004–2018, doi:10.3762/bjoc.8.227
Graphical Abstract
Figure 1: Representative drug candidates of amino-azaindole and phenyl-azaindole containing motifs.
Scheme 1: Cross coupling of 4-bromo-7-azaindole with amides, amines, amino acid esters and phenols.
Beilstein J. Org. Chem. 2012, 8, 1936–1998, doi:10.3762/bjoc.8.225
Graphical Abstract
Figure 1: Loschmidt’s structure proposal for benzene (1) (Scheme 181 from [3]) and the corresponding modern stru...
Figure 2: The first isolated bisallenes.
Figure 3: Carbon skeletons of selected bisallenes discussed in this review.
Scheme 1: The preparation of 1,2,4,5-hexatetraene (2).
Scheme 2: The preparation of a conjugated bisallene by the DMS-protocol.
Scheme 3: Preparation of the 3-deuterio- and 3,4-dideuterio derivatives of 24.
Scheme 4: A versatile method to prepare alkylated conjugated bisallenes and other allenes.
Scheme 5: A preparation of 3,4-dimethyl-1,2,4,5-hexatetraene (38).
Scheme 6: A (C6 + 0)-approach to 1,2,4,5-hexatetraene (2).
Scheme 7: The preparation of a fully alkylated bisallenes from a 2,4-hexadiyne-1,6-diol diacetate.
Scheme 8: The preparation of the first phenyl-substituted conjugated bisallenes 3 and 4.
Scheme 9: Selective hydrogenation of [5]cumulenes to conjugated bisallenes: another (C6 + 0)-route.
Scheme 10: Aryl-substituted conjugated bisallenes by a (C3 + C3)-approach.
Scheme 11: Hexaphenyl-1,2,4,5-hexatetraene (59) by a (C3 + C3)-approach.
Scheme 12: An allenation route to conjugated bisallenes.
Scheme 13: The preparation of 3,4-difunctionalized conjugated bisallenes.
Scheme 14: Problems during the preparation of sulfur-substituted conjugated bisallenes.
Scheme 15: The preparation of 3,4-dibromo bisallenes.
Scheme 16: Generation of allenolates by an oxy-Cope rearrangement.
Scheme 17: A linear trimerization of alkynes to conjugated bisallenes: a (C2 + C2 + C2)-protocol.
Scheme 18: Preparation of a TMS-substituted conjugated bisallene by a C3-dimerization route.
Scheme 19: A bis(trimethylsilyl)bisallene by a C3-coupling protocol.
Scheme 20: The rearrangement of highly substituted benzene derivatives into their conjugated bisallenic isomer...
Scheme 21: From fully substituted benzene derivatives to fully substituted bisallenes.
Scheme 22: From a bicyclopropenyl to a conjugated bisallene derivative.
Scheme 23: The conversion of a bismethylenecyclobutene into a conjugated bisallene.
Scheme 24: The preparation of monofunctionalized bisallenes.
Scheme 25: Preparation of bisallene diols and their cyclization to dihydrofurans.
Scheme 26: A 3,4-difunctionalized conjugated bisallene by a C3-coupling process.
Scheme 27: Preparation of a bisallenic diketone by a coupling reaction.
Scheme 28: Sulfur and selenium-substituted bisallenes by a [2.3]sigmatropic rearrangement.
Scheme 29: The biallenylation of azetidinones.
Scheme 30: The preparation of a fully ferrocenylated conjugated bisallene.
Scheme 31: The first isomerization of a 1,5-hexadiyne to a 1,2,4,5-hexatetraene.
Scheme 32: The preparation of alkynyl-substituted bisallenes by a C3-dimerization protocol.
Scheme 33: Preparation of another completely ferrocenylated bisallene.
Scheme 34: The cyclization of 1,5-hexadiyne (129) to 3,4-bismethylenecyclobutene (130) via 1,2,4,5-hexatetraen...
Scheme 35: Stereochemistry of the thermal cyclization of bisallenes to bismethylenecyclobutenes.
Scheme 36: Bisallene→bismethylenecyclobutene ring closures in the solid state.
Scheme 37: A bisallene cyclization/dimerization reaction.
Scheme 38: A selection of Diels–Alder additions of 1,2,4,5-hexatetraene with various double-bond dienophiles.
Scheme 39: The stereochemistry of the [2 + 4] cycloaddition to conjugated bisallenes.
Scheme 40: Preparation of azetidinone derivatives from conjugated bisallenes.
Scheme 41: Cycloaddition of heterodienophiles to a conjugated bisallene.
Scheme 42: Addition of triple-bond dienophiles to conjugated bisallenes.
Scheme 43: Sulfur dioxide addition to conjugated bisallenes.
Scheme 44: The addition of a germylene to a conjugated bisallene.
Scheme 45: Trapping of conjugated bisallenes with phosphinidenes.
Scheme 46: The cyclopropanantion of 1,2,4,5-hexatetraene (2).
Scheme 47: Photochemical reactions involving conjugated bisallenes.
Scheme 48: Base-catalyzed isomerizations of conjugated bisallenes.
Scheme 49: Ionic additions to a conjugated bisallene.
Scheme 50: Oxidation reactions of a conjugated bisallene.
Scheme 51: The mechanism of oxidation of the bisallene 24.
Scheme 52: CuCl-catalyzed cyclization of 1,2,4,5-hexatetraene (2).
Scheme 53: The conversion of conjugated bisallenes into cyclopentenones.
Scheme 54: Oligomerization of a conjugated bisallene by nickel catalysts.
Scheme 55: Generation of 1,2,5,6-heptatetraene (229) as a reaction intermediate.
Scheme 56: The preparation of a stable derivative of 1,2,5,6-heptatetraene.
Scheme 57: A bisallene with a carbonyl group as a spacer element.
Scheme 58: The first preparation of 1,2,6,7-octatetraene (242).
Scheme 59: Preparation of 1,2,6,7-octatetraenes by (C4 + C4)-coupling of enynes.
Scheme 60: Preparation of 1,2,6,7-octatetraenes by (C4 + C4)-coupling of homoallenyl bromides.
Scheme 61: Preparation of 1,2,6,7-octatetraenes by alkylation of propargylic substrates.
Scheme 62: Preparation of two highly functionalized 1,2,6,7-octatetraenes.
Scheme 63: Preparation of several higher α,ω-bisallenes.
Scheme 64: Preparation of different alkyl derivatives of α,ω-bisallenes.
Scheme 65: The preparation of functionalized 1,2,7,8-nonatetraene derivatives.
Scheme 66: Preparation of functionalized α,ω-bisallenes.
Scheme 67: The preparation of an α,ω-bisallene by direct homologation of an α,ω-bisalkyne.
Scheme 68: The gas-phase pyrolysis of 4,4-dimethyl-1,2,5,6-heptatetraene (237).
Scheme 69: Gas-phase pyrolysis of 1,2,6,7-octatetraene (242).
Scheme 70: The cyclopropanation of 1,2,6,7-octatetraene (242).
Scheme 71: Intramolecular cyclization of 1,2,6,7-octatetraene derivatives.
Scheme 72: The gas-phase pyrolysis of 1,2,7,8-nonatetraene (265) and 1,2,8,9-decatetraene (266).
Scheme 73: Rh-catalyzed cyclization of a functionalized 1,2,7,8-nonatetraene.
Scheme 74: A triple cyclization involving two different allenic substrates.
Scheme 75: Bicyclization of keto derivatives of 1,2,7,8-nonatetraene.
Scheme 76: The preparation of complex organic compounds from functionalized bisallenes.
Scheme 77: Cycloisomerization of an α,ω-bisallene containing a C9 tether.
Scheme 78: Organoborane polymers from α,ω-bisallenes.
Scheme 79: Preparation of trans- (337) and cis-1,2,4,6,7-octapentaene (341).
Scheme 80: The preparation of 4-methylene-1,2,5,6-heptatetraene (349).
Scheme 81: The preparation of acetylenic bisallenes.
Scheme 82: The preparation of derivatives of hydrocarbon 351.
Scheme 83: The construction of macrocyclic alleno-acetylenes.
Scheme 84: Preparation and reactions of 4,5-bismethylene-1,2,6,7-octatetraene (365).
Scheme 85: Preparation of 1,2-bis(propadienyl)benzene (370).
Scheme 86: The preparation of 1,4-bis(propadienyl)benzene (376).
Scheme 87: The preparation of aromatic and heteroaromatic bisallenes by metal-mediated coupling reactions.
Scheme 88: Double cyclization of an aromatic bisallene.
Scheme 89: Preparation of an allenic [15]paracyclophane by a ring-closing metathesis reaction of an aromatic α...
Scheme 90: Preparation of a macrocyclic ring system containing 1,4-bis(propadienyl)benzene units.
Scheme 91: Preparation of copolymers from 1,4-bis(propadienyl)benzene (376).
Scheme 92: A boration/copolymerization sequence of an aromatic bisallene and an aromatic bisacetylene.
Scheme 93: Formation of a layered aromatic bisallene.
Figure 4: The first members of the semicyclic bisallene series.
Scheme 94: Preparation of the first bis(vinylidene)cyclobutane derivative.
Scheme 95: Dimerization of strain-activated cumulenes to bis(vinylidene)cyclobutanes.
Scheme 96: Photodimerization of two fully substituted butatrienes in the solid state.
Scheme 97: Preparation of the two parent bis(vinylidene)cyclobutanes.
Scheme 98: The preparation of 1,3-bis(vinylidene)cyclopentane and its thermal isomerization.
Scheme 99: The preparation of the isomeric bis(vinylidene)cyclohexanes.
Scheme 100: Bi- and tricyclic conjugated bisallenes.
Scheme 101: A selection of polycyclic bisallenes.
Scheme 102: The first endocyclic bisallenes.
Figure 5: The stereochemistry of 1,2,6,7-cyclodecatetraene.
Scheme 103: The preparation of several endocyclic bisallenes.
Scheme 104: Synthesis of diastereomeric derivatives of 1,2,6,7-cyclodecatetraene.
Scheme 105: Preparation of a derivative of 1,2,8,9-cyclotetradecatetraene.
Scheme 106: The preparation of keto derivatives of cyclic bisallenes.
Scheme 107: The preparation of cyclic biscumulenic ring systems.
Scheme 108: Cyclic bisallenes in natural- and non-natural-product chemistry.
Scheme 109: The preparation of iron carbonyl complexes from cyclic bisallenes.
Figure 6: A selection of unknown exocyclic bisallenes that should have interesting chemical properties.
Scheme 110: The thermal isomerization of 1,2-diethynylcyclopropanes and -cyclobutanes.
Scheme 111: Intermediate generation of a cyclooctapentaene.
Scheme 112: Attempted preparation of a cyclodecahexaene.
Scheme 113: The thermal isomerization of 1,5,9-cyclododecatriyne (511) into [6]radialene (514).
Scheme 114: An isomerization involving a diketone derived from a conjugated bisallene.
Scheme 115: Typical reaction modes of heteroorganic bisallenes.
Scheme 116: Generation and thermal behavior of acyclic hetero-organic bisallenes.
Scheme 117: Generation of bis(propadienyl)thioether.
Scheme 118: The preparation of a bisallenic sulfone and its thermal isomerization.
Scheme 119: Bromination of the bisallenic sulfone 535.
Scheme 120: Metalation/hydrolysis of the bisallenic sulfone 535.
Scheme 121: Aromatic compounds from hetero bisallenes.
Scheme 122: Isomerization/cyclization of bispropargylic ethers.
Scheme 123: The preparation of novel aromatic systems by base-catalyzed isomerization of bispropargyl ethers.
Scheme 124: The isomerization of bisacetylenic thioethers to bicyclic thiophenes.
Scheme 125: Aromatization of macrocyclic bispropargylic sulfides.
Scheme 126: Preparation of ansa-compounds from macrocyclic bispropargyl thioethers.
Scheme 127: Alternate route for cyclization of a heterorganic bisallene.
Scheme 128: Multiple isomerization/cyclization of “double” bispropargylic thioethers.
Scheme 129: Preparation of a bisallenyl disulfide and its subsequent bicyclization.
Scheme 130: Thermal cyclization of a bisallenyl thiosulfonate.
Scheme 131: Some reactions of heteroorganic bisallenes with two sulfur atoms.
Scheme 132: Further methods for the preparation of heteroorganic bisallenes.
Scheme 133: Cyclization reactions of heteroorganic bisallenes.
Scheme 134: Thermal cycloadditions of bisallenic tertiary amines.
Scheme 135: Cyclization of a bisallenic tertiary amine in the presence of a transition-metal catalyst.
Scheme 136: A Pauson–Khand reaction of a bisallenic ether.
Scheme 137: Formation of a 2:1adduct from two allenic substrates.
Scheme 138: A ring-forming silastannylation of a bisallenic tertiary amine.
Scheme 139: A three-component cyclization involving a heterorganic bisallene.
Scheme 140: Atom-economic construction of a complex organic framework from a heterorganic α,ω-bisallene.
Beilstein J. Org. Chem. 2012, 8, 1730–1746, doi:10.3762/bjoc.8.198
Graphical Abstract
Scheme 1: Typical catalytic cycle for Pd(II)-catalyzed alkenylation of indoles.
Scheme 2: Application of Fujiwara’s reaction to electron-rich heterocycles.
Scheme 3: Regioselective alkenylation of the unprotected indole.
Scheme 4: Plausible mechanism of the selective indole alkenylation, adapted from [49].
Scheme 5: Directing-group control in intermolecular indole alkenylation.
Scheme 6: Direct C–H alkenylation of N-(2-pyridyl)sulfonylindole.
Scheme 7: N-Prenylation of indoles with 2-methyl-2-butene.
Scheme 8: Proposed mechanism of the N-indolyl prenylation.
Scheme 9: Regioselective arylation of indoles by dual C–H functionalization.
Scheme 10: Plausible mechanism of the selective indole arylation.
Scheme 11: Chemoselective cyclization of N-allyl-1H-indole-2-carboxamide derivatives.
Scheme 12: Intramolecular annulations of alkenylindoles.
Scheme 13: A mechanistic probe for intramolecular annulations of alkenylindoles, adapted from Ferreira et al. [66]....
Scheme 14: Asymmetric indole annulations catalyzed by chiral Pd(II) complexes.
Scheme 15: Aerobic Pd(II)-catalyzed endo cyclization and subsequent amide cleavage/ester formation.
Scheme 16: Synthesis of the pyrimido[3,4-a]indole skeleton by intramolecular C-2 alkenylation.
Scheme 17: Synthesis of azepinoindoles by oxidative Heck cyclization.
Scheme 18: Enantioselective synthesis of 4-vinyl-substituted tetrahydro-β-carbolines.
Scheme 19: Pd-catalyzed endo-cyclization of 3-alkenylindoles for the construction of carbazoles.
Scheme 20: Pd-catalyzed hydroamination of 2-indolyl allenamides.
Scheme 21: Amidation reaction of 1-allyl-2-indolecarboxamides.
Scheme 22: Intramolecular cyclization of N-benzoylindole.
Scheme 23: Intramolecular alkenylation/carboxylation of alkenylindoles.
Scheme 24: Intermolecular alkenylation/carboxylation of 2-substituted indoles.
Scheme 25: Mechanistic investigation of the cyclization/carboxylation reaction.
Scheme 26: Plausible catalytic cycle for the cyclization/carboxylation of alkenylindoles, adapted from Liu et ...
Scheme 27: Intramolecular domino reactions of indolylallylamides through alkenylation/halogenation or alkenyla...
Scheme 28: Proposed mechanism for the alkenylation/esterification process through iminium intermediates.
Scheme 29: Cyclization of 3-indolylallylcarboxamides involving 1,2-migration of the acyl group from spiro-inte...
Scheme 30: Domino reactions of 2-indolylallylcarboxamides involving N–H functionalization.
Scheme 31: Cyclization/acyloxylation reaction of 3-alkenylindoles.
Scheme 32: Doubly intramolecular C–H functionalization of a 2-indolylcarboxamide bearing two allylic groups.
Beilstein J. Org. Chem. 2012, 8, 1554–1563, doi:10.3762/bjoc.8.177
Graphical Abstract
Scheme 1: Heterolytic cleavage of H2 by a phosphine/borane FLP by H2 polarization in the P–B cavity [5,11].
Scheme 2: Insertion of carbon dioxide into a phosphine/borane FLP [14].
Figure 1: Simplified frontier-molecular-orbital diagrams for (a) Mδ+═Eδ− and (b) Mδ−═Eδ+ FLPs (n = 1 for line...
Figure 2: Quenching of M═E FLPs by dimerization: (a) generic Mδ+═Eδ− case, and (b) Bergman's arylimido zircon...
Scheme 3: Oxygen-atom extrusion from CO2 by a Ta(V) neopentylidene [27].
Scheme 4: Oxygen-atom transfer from acetone at a Zr(IV) imide [28].
Scheme 5: Alkyne cycloaddition at a Zr(IV) imide [38].
Scheme 6: Nitrile-alkyne cross metathesis at a W(VI) nitride [40,41].
Scheme 7: C–H and H–H addition across a zirconium(IV) imide [42].
Scheme 8: Formal [2 + 2] cycloaddition of methyl isocyanate at a ruthenium silylene [58].
Scheme 9: Oxygen-atom transfer from phenyl isocyanate to a cationic terminal borylene [60].
Scheme 10: Coupling of a phosphorus ylide with an iridium methylene [62].
Scheme 11: Reactions of (PNP)Ir═C(H)Ot-Bu with oxygen-containing heterocumulenes [71].
Scheme 12: Reductive coupling of two CS2 units at (PNP)Ir═C(H)Ot-Bu [73].
Figure 3: Single-crystal X-ray structure of a silver(I) triflate adduct of (PNP)Ir═C(H)Ot-Bu with most H atom...
Scheme 13: Possible routes to C–H functionalization by 1,2-addition across a polarized metal–element multiple ...
Scheme 14: Alkoxycarbene formation by double C–H activation at (PNP)Ir [88].
Scheme 15: Catalytic oxidation of MTBE by multiple C–H activations and nitrene-group transfer to a Mδ−═Eδ+ FLP ...
Beilstein J. Org. Chem. 2011, 7, 1584–1601, doi:10.3762/bjoc.7.187
Graphical Abstract
Scheme 1: Stoichiometric and catalytic direct (hetero)arylation of arenes.
Scheme 2: Stille and Negishi cross-coupling methodologies in oxazole series [28,30,31,33,34].
Scheme 3: Stoichiometric direct (hetero)arylation of (benz)oxazole with magnesate bases [35].
Scheme 4: Ohta's pioneering catalytic direct C5-selective pyrazinylation of oxazole [36,37].
Scheme 5: Preparation of pharmaceutical compounds by following the pioneering Ohta protocol [38,39].
Scheme 6: Miura’s pioneering catalytic direct arylations of (benz)oxazoles [40]. aIsolated yield.
Scheme 7: Pd(0)- and Cu(I)-catalyzed direct C2-selective arylation of (benz)oxazoles [41-44].
Scheme 8: Cu(I)-catalyzed direct C2-selective arylations of (benz)oxazoles [40,45-47].
Scheme 9: Copper-free Pd(0)-catalyzed direct C5- and C2-selective arylation of oxazole-4-carboxylate esters [48-50,52].
Scheme 10: Iterative synthesis of bis- and trioxazoles [51].
Scheme 11: Preparation of DPO- and POPOP-analogues [53].
Scheme 12: Pd(0)-catalyzed direct arylation of benzoxazole with aryl chlorides [54].
Scheme 13: Pd(0)-catalyzed direct C2-selective arylation of (benz)oxazoles with bromides and chlorides using b...
Scheme 14: Palladium-catalyzed direct arylation of oxazoles under green conditions; (a) Zhuralev direct arylat...
Scheme 15: Pd(0)-catalyzed C2- and C5-selective (hetero)arylation of oxazole [63].
Scheme 16: Pd(0)-catalyzed C2- and C5-selective (hetero)arylation of ethyl oxazole-4-carboxylate [64].
Scheme 17: Pd(0)-catalyzed direct C4-phenylation of oxazoles; (a) Miura’s procedure [65]; (b) Fagnou’s procedure [66].
Scheme 18: Catalytic cycles for Cu(I)-catalyzed (routeA) and Pd(0)/Cu(I)-catalyzed (route B) direct arylation ...
Scheme 19: Base-assisted, Pd(0)-catalyzed, C2-selective, direct arylation of benzoxazole proposed by Zhuralev [58]...
Scheme 20: Electrophilic substitution-type mechanism proposed by Hoarau [64].
Scheme 21: CMD-proceeding C5-selective direct arylation of oxazole proposed by Strotman and Chobabian [63].
Scheme 22: DFT calculations on methyl oxazole-4-carboxylate and consequently developed methodologies for the P...
Scheme 23: Pd(0)-catalyzed direct arylation of (benz)oxazoles with tosylates and mesylates [71].
Scheme 24: Pd(0)-catalyzed direct arylation of oxazoles with sulfamates [72].
Scheme 25: Pd(II)- and Cu(II)-catalyzed decarboxylative direct C–H coupling of oxazoles with 4- and 5-carboxyo...
Scheme 26: Pd(II)- and Ag(II)-catalyzed decarboxylative direct arylation of (benzo)oxazoles [74]; (a) procedure; (...
Scheme 27: Pd(II)- and Cu(II)-catalyzed direct arylation of benzoxazole with arylboronic acids [76]; (a) procedure...
Scheme 28: Ni(II)-catalyzed direct arylation of benzoxazoles with arylboronic acids under O2 [76]; (a) procedure; ...
Scheme 29: Rhodium-catalyzed direct arylation of benzoxazole [78,79].
Scheme 30: Ni(II)-catalyzed direct arylation of (benz)oxazoles with aryl halides; (a) Itami's procedure [80]; (b) ...
Scheme 31: Dehydrogenative cross-coupling of (benz)oxazoles; (a) Pd(II)- and Cu(II)-catalyzed cross-coupling o...
Beilstein J. Org. Chem. 2011, 7, 1387–1406, doi:10.3762/bjoc.7.163
Graphical Abstract
Scheme 1: Synthesis of substituted amides.
Scheme 2: Synthesis of ketocarbamates and imidazolones.
Scheme 3: Access to β-lactams.
Scheme 4: Access to β-lactams with increased structural diversity.
Scheme 5: Synthesis of imidazolinium salts.
Scheme 6: Access to the indenamine core.
Scheme 7: Synthesis of substituted tetrahydropyridines.
Scheme 8: Synthesis of more substituted tetrahydropyridines.
Scheme 9: Synthesis of chiral tetrahydropyridines.
Scheme 10: Preparation of α-aminonitrile by a catalyzed Strecker reaction.
Scheme 11: Synthesis of spiroacetals.
Scheme 12: Synthesis of masked 3-aminoindan-1-ones.
Scheme 13: Synthesis of homoallylic amines and α-aminoesters.
Scheme 14: Preparation of 1,2-dihydroisoquinolin-1-ylphosphonates.
Scheme 15: Pyrazole elaboration by cycloaddition of hydrazines with alkynones generated in situ.
Scheme 16: An alternative approach to pyrazoles involving hydrazine cycloaddition.
Scheme 17: Synthesis of pyrroles by cyclization of propargyl amines.
Scheme 18: Isoindolone and phthalazone synthesis by cyclization of acylhydrazides.
Scheme 19: Sultam synthesis by cyclization of sulfonamides.
Scheme 20: Synthesis of sulfonamides by aminosulfonylation of aryl iodides.
Scheme 21: Pyrrolidine synthesis by carbopalladation of allylamines.
Scheme 22: Synthesis of indoles through a sequential C–C coupling/desilylation–coupling/cyclization reaction.
Scheme 23: Synthesis of indoles by a site selective Pd/C catalyzed cross-coupling approach.
Scheme 24: Synthesis of isoindolin-1-one derivatives through a sequential Sonogashira coupling/carbonylation/h...
Scheme 25: Synthesis of pyrroles through an allylic amination/Sonogashira coupling/hydroamination reaction.
Scheme 26: Synthesis of indoles through a Sonogashira coupling/cyclofunctionalization reaction.
Scheme 27: Synthesis of indoles through a one-pot two-step Sonogashira coupling/cyclofunctionalization reactio...
Scheme 28: Synthesis of α-alkynylindoles through a Pd-catalyzed Sonogashira/double C–N coupling reaction.
Scheme 29: Synthesis of indoles through a Pd-catalyzed sequential alkenyl amination/C-arylation/N-arylation.
Scheme 30: Synthesis of N-aryl-2-benzylpyrrolidines through a sequential N-arylation/carboamination reaction.
Scheme 31: Synthesis of phenothiazine derivatives through a one-pot palladium-catalyzed double C–N arylation i...
Scheme 32: Synthesis of substituted imidazolidinones through a palladium-catalyzed three-component reaction of...
Scheme 33: Synthesis of 2,3-diarylated amines through a palladium-catalyzed four-component reaction involving ...
Scheme 34: Synthesis of rolipram involving a Pd-catalyzed three-component reaction.
Scheme 35: Synthesis of seven-membered ring lactams through a Pd-catalyzed amination/intramolecular cyclocarbo...
Beilstein J. Org. Chem. 2011, 7, 1379–1386, doi:10.3762/bjoc.7.162
Graphical Abstract
Scheme 1: Amino-hydroxyfluorination of alkynes reported by Nevado et al. [2].
Scheme 2: Proposed access to fluoromethylene pyrrolidines and piperidines.
Scheme 3: Cyclization of 1b under standard conditions.
Scheme 4: Proposed mechanism.
Scheme 5: Mechanistic probes.
Scheme 6: Cationic Au(I)-catalyzed reaction of 1a without Selectfluor.
Beilstein J. Org. Chem. 2011, 7, 1108–1114, doi:10.3762/bjoc.7.127
Graphical Abstract
Scheme 1: Electrochemically generated N-acyliminium ions 1 and subsequent reactions.
Figure 1: Electrochemical microreactor.
Scheme 2: Electrolysis of furan.
Scheme 3: Kolbe electrolysis of phenylacetic acids 6 in flow.
Scheme 4: Synthesis of diaryliodonium salts 11 in flow.
Beilstein J. Org. Chem. 2011, 7, 1064–1069, doi:10.3762/bjoc.7.122
Graphical Abstract
Scheme 1: Halogen–lithium exchange of p-bromoanisole followed by reaction with methanol.
Figure 1: Flow microreactor system for halogen–lithium exchange of aryl halide followed by reaction with meth...
Figure 2: Effects of the temperature (T) and the residence time in R1 (tR1) on the yield of anisole in the Br...
Scheme 2: Halogen-lithium exchange of p-bromoanisole followed by oxidative homocoupling with FeCl3.
Figure 3: Integrated flow microreactor system for oxidative homocoupling reaction of aryllithium with FeCl3. ...
Figure 4: Effects of the temperature (T) and the residence time in R2 (tR2) on the yield of 4,4'-dimethoxybip...
Beilstein J. Org. Chem. 2011, 7, 897–936, doi:10.3762/bjoc.7.103
Graphical Abstract
Scheme 1: Gold-catalyzed addition of alcohols.
Scheme 2: Gold-catalyzed cycloaddition of alcohols.
Scheme 3: Ionic liquids as the solvent in gold-catalyzed cycloaddition.
Scheme 4: Gold-catalyzed cycloaddition of diynes.
Scheme 5: Gold(I) chloride catalyzed cycloisomerization of 2-alkynyl-1,5-diols.
Scheme 6: Gold-catalyzed cycloaddition of glycols and dihydroxy compounds.
Scheme 7: Gold-catalyzed ring-opening of cyclopropenes.
Scheme 8: Gold-catalyzed intermolecular hydroalkoxylation of alkynes. PR3 = 41–45.
Scheme 9: Gold-catalyzed intramolecular 6-endo-dig cyclization of β-hydroxy-α,α-difluoroynones.
Scheme 10: Gold-catalyzed intermolecular hydroalkoxylation of non-activated olefins.
Scheme 11: Preparation of unsymmetrical ethers from alcohols.
Scheme 12: Expedient synthesis of dihydrofuran-3-ones.
Scheme 13: Catalytic approach to functionalized divinyl ketones.
Scheme 14: Gold-catalyzed glycosylation.
Scheme 15: Gold-catalyzed cycloaddition of aldehydes and ketones.
Scheme 16: Gold-catalyzed annulations of 2-(ynol)aryl aldehydes and o-alkynyl benzaldehydes.
Scheme 17: Gold-catalyzed addition of carboxylates.
Scheme 18: Dual-catalyzed rearrangement reaction of allenoates.
Scheme 19: Meyer–Schuster rearrangement of propargylic alcohols.
Scheme 20: Propargylic alcohol rearrangements.
Scheme 21: Gold-catalyzed synthesis of imines and amine alkylation.
Scheme 22: Hydroamination of allenes and allenamides.
Scheme 23: Gold-catalyzed inter- and intramolecular amination of alkynes and alkenes.
Scheme 24: Gold-catalyzed cycloisomerization of O-propioloyl oximes and β-allenylhydrazones.
Scheme 25: Intra- and intermolecular amination with ureas.
Scheme 26: Gold-catalyzed cyclization of ortho-alkynyl-N-sulfonylanilines and but-3-yn-1-amines.
Scheme 27: Gold-catalyzed piperidine ring synthesis.
Scheme 28: Ring expansion of alkylnyl cyclopropanes.
Scheme 29: Gold-catalyzed annulations of N-propargyl-β-enaminones and azomethine imines.
Scheme 30: Gold(I)-catalyzed cycloisomerization of aziridines.
Scheme 31: AuCl3/AgSbF6-catalyzed intramolecular amination of 2-(tosylamino)phenylprop-1-en-3-ols.
Scheme 32: Gold-catalyzed cyclization via a 7-endo-dig pathway.
Scheme 33: Gold-catalyzed synthesis of fused xanthines.
Scheme 34: Gold-catalyzed synthesis of amides and isoquinolines.
Scheme 35: Gold-catalyzed oxidative cross-coupling reactions of propargylic acetates.
Scheme 36: Gold-catalyzed nucleophilic addition to allenamides.
Scheme 37: Gold-catalyzed direct carbon–carbon bond coupling reactions.
Scheme 38: Gold-catalyzed C−H functionalization of indole/pyrrole heterocycles and non-activated arenes.
Scheme 39: Gold-catalyzed cycloisomerization of cyclic compounds.
Scheme 40: Gold-catalyzed cycloaddition of 1-aryl-1-allen-6-enes and propargyl acetates.
Scheme 41: Gold(I)-catalyzed cycloaddition with ligand-controlled regiochemistry.
Scheme 42: Gold(I)-catalyzed cycloaddition of dienes and enynes.
Scheme 43: Gold-catalyzed intramolecular cycloaddition of 3-alkoxy-1,5-enynes and 2,2-dipropargylmalonates.
Scheme 44: Gold-catalyzed intramolecular cycloaddition of 1,5-allenynes.
Scheme 45: Gold(I)-catalyzed cycloaddition of indoles.
Scheme 46: Gold-catalyzed annulation reactions.
Scheme 47: Gold–carbenoid induced cleavage of a sp3-hybridized C−H bond.
Scheme 48: Furan- and indole-based cascade reactions.
Scheme 49: Tandem process using aromatic alkynes.
Scheme 50: Gold-catalyzed cycloaddition of 1,3-dien-5-ynes.
Scheme 51: Gold-catalyzed cascade cyclization of diynes, propargylic esters, and 1,3-enynyl ketones.
Scheme 52: Tandem reaction of β-phenoxyimino ketones and alkynyl oxime ethers.
Scheme 53: Gold-catalyzed tandem cyclization of enynes, 2-(tosylamino)phenylprop-1-yn-3-ols, and allenoates.
Scheme 54: Cyclization of 2,4-dien-6-yne carboxylic acids.
Scheme 55: Gold(I)-catalyzed tandem cyclization approach to tetracyclic indolines.
Scheme 56: Gold-catalyzed tandem reactions of alkynes.
Scheme 57: Aminoarylation and oxyarylation of alkenes.
Scheme 58: Cycloaddition of 2-ethynylnitrobenzene with various alkenes.
Scheme 59: Gold-catalyzed tandem reactions of allenoates and alkynes.
Scheme 60: Gold-catalyzed asymmetric synthesis of 2,3-dihydropyrroles.
Scheme 61: Chiral [NHC–Au(I)]-catalyzed cyclization of enyne.
Scheme 62: Gold-catalyzed hydroaminations and hydroalkoxylations.
Scheme 63: Gold(I)-catalyzed asymmetric hydroalkoxylation of 1,3-dihydroxymethyl-2-alkynylbenzene chromium com...
Scheme 64: Gold-catalyzed synthesis of julolidine derivatives.
Scheme 65: Gold-catalyzed the synthesis of chiral fused heterocycles.
Scheme 66: Gold-catalyzed asymmetric reactions with 3,5-(t-Bu)2-4-MeO-MeOBIPHEP.
Scheme 67: Gold-catalyzed cyclization of o-(alkynyl) styrenes.
Scheme 68: Asymmetric gold(I)-catalyzed redox-neutral domino reactions of enynes.
Scheme 69: Gold(I)-catalyzed enantioselective polyene cyclization reaction.
Scheme 70: Gold(I)-catalyzed enantioselective synthesis of benzopyrans.
Scheme 71: Gold(I)-catalyzed enantioselective ring expansion of allenylcyclopropanols.
Beilstein J. Org. Chem. 2011, 7, 808–812, doi:10.3762/bjoc.7.92
Graphical Abstract
Scheme 1: Previous work and our projected gold-catalyzed Sonogashira-type cross-coupling.
Scheme 2: Scope of the Sonogashira-type cross-coupling reaction (isolated yield). aAgOTf in place of AgBF4. b...
Scheme 3: Proposed mechanism for the Au(I)/Au(III)-catalyzed Sonogashira-type cross-coupling.
Beilstein J. Org. Chem. 2011, 7, 578–581, doi:10.3762/bjoc.7.67
Graphical Abstract
Scheme 1: A new entry to substituted cross-conjugated trienes.
Scheme 2: A proposed reaction pathway.
Scheme 3: [4 + 2] cycloaddition reaction of 3a with PTAD and TCNE.
Beilstein J. Org. Chem. 2011, 7, 404–409, doi:10.3762/bjoc.7.52
Graphical Abstract
Scheme 1: Rh(I)-catalyzed Pauson–Khand type reaction of 1 and 4.
Scheme 2: Formation of 4,4-bis(methoxycarbonyl)-6-methylbicyclo[4.3.0]non-1(9)-en-8-one (9g).
Beilstein J. Org. Chem. 2011, 7, 338–345, doi:10.3762/bjoc.7.44
Graphical Abstract
Figure 1: Diversity-based thieno[2,3-d]pyrimidine scaffold [7].
Scheme 1: Pd/C-mediated synthesis of 4-alkynyl-substituted thieno[2,3-d]pyrimidines.
Scheme 2: Preparation of 4-chloro-6,7,8,9-tetrahydro-5H-cyclohepta[4,5]thieno[2,3-d]pyrimidine 1d.
Scheme 3: Reactivity of 4-chlorothieno[2,3-d]pyrimidines 1 towards terminal alkynes and MeOH under Pd/C–Cu ca...
Scheme 4: Plausible mechanism of Pd/C-mediated alkynylation of 4-chlorothieno[2,3-d]pyrimidines 1.
Figure 2: Possible interactions of compounds 3f and 3g with TS enzyme.
Beilstein J. Org. Chem. 2011, 7, 298–303, doi:10.3762/bjoc.7.39
Graphical Abstract
Scheme 1: General approach to spirocyclopropanated tetrahydropyridones by 1,3-dipolar cycloaddition/thermal r...
Scheme 2: Synthesis of tetrahydrospiro[cyclopropane-1,1’(2’H,6’H)-pyrido[2,1-a]isoquinolin]-2’-one 8.
Scheme 3: Synthesis of 7’-oxohexahydro spiro[cyclopropane-1-8’(5’H)indolizines] 12.
Scheme 4: Olefination of spirocyclopropanated heterocyclic ketones 8, 12 and 16.
Figure 1: Key NOE interactions. 18: 11b-H/11-H, 11b-H/6-H, 11b-H/Ht, Hv/2-CH3; E-19: Hb/CH3, Hc/11b-H, Hc/11-...
Scheme 5: Rearrangement of VCPs 15 and 17 catalyzed by Rh(PPh3)3Cl.
Scheme 6: Mechanism of the rearrangement of heterocyclic VCPs catalyzed by Rh(PPh3)3Cl.
Beilstein J. Org. Chem. 2010, 6, No. 65, doi:10.3762/bjoc.6.65
Graphical Abstract
Scheme 1: Preparation of the first electrophilic trifluoromethylating reagent and its reaction with a thiophe...
Scheme 2: Synthetic routes to S-CF3 and Se-CF3 dibenzochalcogenium salts.
Scheme 3: Synthesis of (trifluoromethyl)dibenzotellurophenium salts.
Scheme 4: Nitration of (trifluoromethyl)dibenzochalcogenium salts.
Scheme 5: Synthesis of a sulphonium salt with a bridged oxygen.
Scheme 6: Reactivity of (trifluoromethyl)dibenzochalcogenium salts.
Scheme 7: Pd(II)-Catalyzed ortho-trifluoromethylation of heterocycle-substituted arenes by Umemoto’s reagents....
Scheme 8: Mild electrophilic trifluoromethylation of β-ketoesters and silyl enol ethers.
Scheme 9: Enantioselective electrophilic trifluoromethylation of β-ketoesters.
Scheme 10: Preparation of water-soluble S-(trifluoromethyl)dibenzothiophenium salts.
Scheme 11: Method for large-scale preparation of S-(trifluoromethyl)dibenzothiophenium salts.
Scheme 12: Triflic acid catalyzed synthesis of 5-(trifluoromethyl)thiophenium salts.
Scheme 13: Trifluoromethylation of β-ketoesters and dicyanoalkylidenes by S-(trifluoromethyl)benzothiophenium ...
Scheme 14: Synthesis of chiral S-(trifluoromethyl)benzothiophenium salt 18 and attempt of enantioselective tri...
Scheme 15: Synthesis of O-(trifluoromethyl)dibenzofuranium salts.
Scheme 16: Photochemical O- and N-trifluoromethylation by 20b.
Scheme 17: Thermal O-trifluoromethylation of phenol by diazonium salt 19a. Effect of the counteranion.
Scheme 18: Thermal O- and N-trifluoromethylations.
Scheme 19: Method of preparation of S-(trifluoromethyl)diphenylsulfonium triflates.
Scheme 20: Reactivity of some S-(trifluoromethyl)diarylsulfonium triflates.
Scheme 21: One-pot synthesis of S-(trifluoromethyl)diarylsulfonium triflates.
Scheme 22: One-pot synthesis of Umemoto’s type reagents.
Scheme 23: Preparation of sulfonium salts by transformation of CF3− into CF3+.
Scheme 24: Selected reactions with the new Yagupolskii reagents.
Scheme 25: Synthesis of heteroaryl-substituted sulfonium salts.
Scheme 26: First neutral S-CF3 reagents.
Scheme 27: Synthesis of Togni reagents. aYield for the two-step procedure.
Scheme 28: Trifluoromethylation of C-nucleophiles with 37.
Scheme 29: Selected examples of trifluoromethylation of S-nucleophiles with 37.
Scheme 30: Selected examples of trifluoromethylation of P-nucleophiles with 35 and 37.
Scheme 31: Trifluoromethylation of 2,4,6-trimethylphenol with 35.
Scheme 32: Examples of O-trifluoromethylation of alcohols with 35 in the presence of 1 equiv of Zn(NTf2)2.
Scheme 33: Formation of trifluoromethyl sulfonates from sulfonic acids and 35.
Scheme 34: Organocatalytic α-trifluoromethylation of aldehydes with 37.
Scheme 35: Synthesis of reagent 42 and mechanism of trifluoromethylation.
Scheme 36: Trifluoromethylation of β-ketoesters and dicyanoalkylidenes with 42.
Beilstein J. Org. Chem. 2010, 6, No. 35, doi:10.3762/bjoc.6.35
Graphical Abstract
Scheme 1: Synthesis of 3-phenylpentane-2,4-dione using CuO-nanoparticles.
Figure 1: Powder X-ray diffraction pattern and TEM image of nano CuO (fresh).
Scheme 2: Synthesis of 3-phenylpentane-2,4-dione using CuO-nanoparticles.
Scheme 3: Synthesis of diethyl 2-aryl-malonate using CuO-nanoparticles.
Figure 2: Proposed reaction pathway for the CuO-nanoparticles catalyzed C–C coupling reaction.
Figure 3: Powder X-ray diffraction pattern and TEM image of recycled CuO-nanoparticles.
Beilstein J. Org. Chem. 2005, 1, No. 6, doi:10.1186/1860-5397-1-6
Graphical Abstract
Scheme 1: Monodentate phosphorus ligands, e.g. BINOL-based phosphoramidites or TADDOL-based phosphites, are h...
Scheme 2: Modular phosphoramidites (R= NR'2) or phosphites (R= OR') from reactive chlorophosphite intermediat...
Figure 1: X-ray crystal structure of BIFOP-Cl (1). Distances are given in Å. (BAA = biaryl angle between C2-C1...
Figure 2: X-ray structures of BIFOP-Br (2). Distances are given in Å. (BAA = biaryl angle between C2-C1-C1'-C2...
Scheme 3: Synthesis of biphenyl-2,2'-bisfenchol (BIFOL) based phosphane derivatives (BIFOPs).
Figure 3: X-ray structures of BIFOP-H (3). Distances are given in Å. (BAA = biaryl angle between C2-C1-C1'-C2...
Figure 4: X-ray structures of BIFOP-nBu (5). Distances are given in Å. (BAA = biaryl angle between C2-C1-C1'-C...
Figure 5: X-ray structures of BIFOP(O)-H (8). Distances are given in Å. (BAA = biaryl angle between C2-C1-C1'...
Figure 6: X-ray structures of phosphite BIFOP-OPh (6). Distances are given in Å. (BAA = biaryl angle between C...
Figure 7: X-ray structures of phosphoramidite BIFOP-NEt2 (7). Distances are given in Å. (BAA = biaryl angle b...
Figure 8: X-ray structures of BIFOP(O)-Cl (9). Distances are given in Å. (BAA = biaryl angle between C2-C1-C1...
Scheme 4: Geometries of BIFOP-systems with respect to biaryl dihedral angles (C2-C1-C1’-C2’, BAA), fenchyl-ar...
Figure 9: Computed geometry (PM3) of plus-(P)-BIFOP-Cl with unnatural plus-(P)-biaryl conformation. Distances...
Scheme 5: Biphenyl-2,2'-bisfenchol based phosphanes (BIFOPs) as chiral ligands in enantioselective Cu-catalyz...
Scheme 6: Anharmonic B3LYP/6-31G*(C,H,N,O,F,Cl,Br) /SDD(Cu) CO-stretching frequencies to assess metal to liga...