Search results

Search for "deprotonation" in Full Text gives 551 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Rearrangement of o-(pivaloylaminomethyl)benzaldehydes: an experimental and computational study

  • Csilla Hargitai,
  • Györgyi Koványi-Lax,
  • Tamás Nagy,
  • Péter Ábrányi-Balogh,
  • András Dancsó,
  • Gábor Tóth,
  • Judit Halász,
  • Angéla Pandur,
  • Gyula Simig and
  • Balázs Volk

Beilstein J. Org. Chem. 2020, 16, 1636–1648, doi:10.3762/bjoc.16.136

Graphical Abstract
  • explained by the protonation of ring tautomers 9 to 10 (Scheme 4), followed by a water elimination, and subsequent deprotonation of cations 11 to afford isoindoles 4 [3][4][5]. The protonation of the latter [6], followed by the attack of water at position 1 of cations 12, and subsequent deprotonation of
  • formation of the dimer-like products 3a and 3b can be rationalized by the electrophilic attack of cations 12a,b at position 3 of isoindoles 4a,b to give cations 15a,b (Scheme 5). The reaction of the latter with water, followed by deprotonation leads to dimer-like compounds 16a,b, being the ring tautomers of
  • dimerization of indole under acidic conditions (Scheme 7) [8]. Electrophilic attack of indole protonated at position 3 toward the position 3 of another indole molecule, followed by deprotonation affords dimer-like derivative 20. The fundamental difference of this transformation from that we observed in the
PDF
Album
Supp Info
Full Research Paper
Published 13 Jul 2020

Facile synthesis of 7-alkyl-1,2,3,4-tetrahydro-1,8-naphthyridines as arginine mimetics using a Horner–Wadsworth–Emmons-based approach

  • Rhys A. Lippa,
  • John A. Murphy and
  • Tim N. Barrett

Beilstein J. Org. Chem. 2020, 16, 1617–1626, doi:10.3762/bjoc.16.134

Graphical Abstract
  • -1,8-naphthyridine analogues. The investigation initially began using commercially available N-Boc-protected tetrahydro-1,8-naphthyridine 8 [16]. Upon deprotonation and quenching with diethyl chlorophosphate, migration of the Boc group from the nitrogen atom to the exocyclic methyl group was observed
  • , affording phosphoramidate 9 in low yield, indicating good leaving group ability of the stabilised tetrahydronaphthyridine anion. No formation of phosphonate 10 was detected (Scheme 3). It was proposed that a deprotonation of 7-methyl-1,2,3,4-tetrahydro-1,8-naphthyridine (11) with two equivalents of sec-BuLi
  • 13 was obtained exclusively at both −42 and −78 °C. The addition of two equivalents of the chlorophosphate yielded diphosphorylated compound 7, albeit in poor yield (Scheme 4). The deprotonation of phosphonate 7 and subsequent reaction with aldehyde 5, formed in situ by oxidation of alcohol 14 using
PDF
Album
Supp Info
Full Research Paper
Published 08 Jul 2020

NHC-catalyzed enantioselective synthesis of β-trifluoromethyl-β-hydroxyamides

  • Alyn T. Davies,
  • Mark D. Greenhalgh,
  • Alexandra M. Z. Slawin and
  • Andrew D. Smith

Beilstein J. Org. Chem. 2020, 16, 1572–1578, doi:10.3762/bjoc.16.129

Graphical Abstract
  • opening with allylamine. Purification gave 17 and 18, respectively, in a moderate yield as single diastereoisomers and with a good enantioselectivity. The mechanism of this NHC redox process is believed to proceed through the following mechanism (Scheme 3): After deprotonation of the triazolium salt
  • precatalyst 3 [58], reversible addition of the free NHC I to the aldehyde leads to adduct II [59]. A subsequent deprotonation allows access to Breslow intermediate III, which can eliminate para-nitrobenzoate to leave azolium enol IV. Deprotonation gives azolium enolate intermediate V, which undergoes a formal
PDF
Album
Supp Info
Letter
Published 30 Jun 2020

Photocatalyzed syntheses of phenanthrenes and their aza-analogues. A review

  • Alessandra Del Tito,
  • Havall Othman Abdulla,
  • Davide Ravelli,
  • Stefano Protti and
  • Maurizio Fagnoni

Beilstein J. Org. Chem. 2020, 16, 1476–1488, doi:10.3762/bjoc.16.123

Graphical Abstract
  • nucleofugal group X−, the intermediate R·, that is in turn trapped by 4.1 (path b). The resulting imidoyl radical 4.2· undergoes cyclization to 4.3· (path c) that is oxidized by PC·+, thus restoring the starting photocatalyst PC and forming the Wheland intermediate 4.3+ (path d). Deprotonation of 4.3+ (path e
PDF
Album
Review
Published 25 Jun 2020

An overview on disulfide-catalyzed and -cocatalyzed photoreactions

  • Yeersen Patehebieke

Beilstein J. Org. Chem. 2020, 16, 1418–1435, doi:10.3762/bjoc.16.118

Graphical Abstract
  • , respectively, which have the same 5-electron 6-carbon cation radical character. Finally, the subsequent deprotonation and HAT by PhS− and PhSH yields the desired [4 + 2] cycloaddition products 22 and 23, respectively. In 1991, Kim and co-workers reported a disulfide-catalyzed ring expansion of cyclobutanone
PDF
Album
Review
Published 23 Jun 2020

Disposable cartridge concept for the on-demand synthesis of turbo Grignards, Knochel–Hauser amides, and magnesium alkoxides

  • Mateo Berton,
  • Kevin Sheehan,
  • Andrea Adamo and
  • D. Tyler McQuade

Beilstein J. Org. Chem. 2020, 16, 1343–1356, doi:10.3762/bjoc.16.115

Graphical Abstract
  • . Challenges: Gas formation from amine deprotonation, residence time optimization due to variations in the amine and amide properties. System setup: The same flow system was used as for the generation of turbo Grignard reagents (Figure S2, Supporting Information File 1). For TMPH, a coil (V = 10 mL, ID = 0.03
  • ″) for the tert-amyl alcohol addition (Figure S4, Supporting Information File 1). Finally, we explored the formation of sterically hindered oxygen bases by a direct alcohol deprotonation. Knochel-type tert-amyl magnesium alkoxide (t-AmylOMgCl⋅LiCl) 1.0 M (95%) was obtained (≈15 mL) by the reaction of the
PDF
Album
Supp Info
Full Research Paper
Published 19 Jun 2020

Photocatalysis with organic dyes: facile access to reactive intermediates for synthesis

  • Stephanie G. E. Amos,
  • Marion Garreau,
  • Luca Buzzetti and
  • Jerome Waser

Beilstein J. Org. Chem. 2020, 16, 1163–1187, doi:10.3762/bjoc.16.103

Graphical Abstract
  • between the aryl substrates 30.1 and the amides 30.2 for the synthesis of the Weinreb amides 30.3 using DCA (OD5) as an organic dye. Under visible-light irradiation, the SET oxidation of 30.2 by the excited state of DCA, followed by a deprotonation, afforded the amidyl radical. This radical behaved as a
PDF
Album
Review
Published 29 May 2020

Recent applications of porphyrins as photocatalysts in organic synthesis: batch and continuous flow approaches

  • Rodrigo Costa e Silva,
  • Luely Oliveira da Silva,
  • Aloisio de Andrade Bartolomeu,
  • Timothy John Brocksom and
  • Kleber Thiago de Oliveira

Beilstein J. Org. Chem. 2020, 16, 917–955, doi:10.3762/bjoc.16.83

Graphical Abstract
  • ion, then giving an imine after deprotonation (Scheme 50). Adopting this strategy, Che and co-workers obtained several imines in 90–99% yield from secondary amines [102] (Scheme 51). The authors observed that the oxidation is regioselective, occurring at the less substituted position of nonsymmetric
PDF
Album
Review
Published 06 May 2020

Cation-induced ring-opening and oxidation reaction of photoreluctant spirooxazine–quinolizinium conjugates

  • Phil M. Pithan,
  • Sören Steup and
  • Heiko Ihmels

Beilstein J. Org. Chem. 2020, 16, 904–916, doi:10.3762/bjoc.16.82

Graphical Abstract
  • a certain extent Hg2+) initially induced a ring-opening reaction that was irreversibly followed by a fast ring closure–deprotonation–oxidation sequence to give styryl-substituted naphthoxazole derivatives as the products quantitatively. For the quinolizinium-substituted spirooxazine derivative, the
  • short-lived absorption band between 500 and 650 nm, which supports this hypothesis and suggests that the processes have different rate constants in the presence of Cu2+ or Fe3+. We finally propose that the following reaction steps, i.e., the ring closure, deprotonation, and electron transfer to a second
PDF
Album
Supp Info
Full Research Paper
Published 05 May 2020

Aldehydes as powerful initiators for photochemical transformations

  • Maria A. Theodoropoulou,
  • Nikolaos F. Nikitas and
  • Christoforos G. Kokotos

Beilstein J. Org. Chem. 2020, 16, 833–857, doi:10.3762/bjoc.16.76

Graphical Abstract
  • (Scheme 27b). The sulfate radical then reacted with formamide (106) to produce the carbamoyl radical 125, which could perform a nucleophilic addition to the C-2 position of the protonated benzothiazole 126. A deprotonation, followed by an oxidation, most probably by the intermediates 121 and 122, could
PDF
Album
Review
Published 23 Apr 2020

Preparation of 2-phospholene oxides by the isomerization of 3-phospholene oxides

  • Péter Bagi,
  • Réka Herbay,
  • Nikolett Péczka,
  • Zoltán Mucsi,
  • István Timári and
  • György Keglevich

Beilstein J. Org. Chem. 2020, 16, 818–832, doi:10.3762/bjoc.16.75

Graphical Abstract
  • the isomerization of 3-phospholene oxides 1 under basic conditions The calculations showed that the reaction mechanism follows a simple sequence under basic conditions (Scheme 4). In the first step the base makes the reactant–base complex 20, and the consequent deprotonation occurs at position C(2
  • hypersurface (PES)). Triethylamine can initiate the deprotonation, but the reaction enthalpy towards 21 is very endothermic, making the reaction rate negligible, as observed in the experiment. In the case of KCO3− (instead of Cs2CO3), the deprotonation proceeds smoothly with almost a thermoneutral fashion
  • deprotonation by NaOEt is already a slightly exothermic process, suggesting a fast transformation. Conclusion In this comprehensive study, the isomerization of 3-phospholene oxides 1 to the corresponding 2-phospholene oxides 4 was investigated. Complete isomerization took place either in the presence of
PDF
Album
Supp Info
Full Research Paper
Published 22 Apr 2020

Microwave-assisted efficient and facile synthesis of tetramic acid derivatives via a one-pot post-Ugi cascade reaction

  • Yong Li,
  • Zheng Huang,
  • Jia Xu,
  • Yong Ding,
  • Dian-Yong Tang,
  • Jie Lei,
  • Hong-yu Li,
  • Zhong-Zhu Chen and
  • Zhi-Gang Xu

Beilstein J. Org. Chem. 2020, 16, 663–669, doi:10.3762/bjoc.16.63

Graphical Abstract
  • results, a reaction mechanism was therefore postulated in Scheme 3. Deprotonation of the α-carbon next to the carbonyl group generates a carbanion 8, which then undergoes a nucleophilic attack to the carbonyl carbon of the ester to give a cyclic enol 9. Leaving of the ethoxy group forms the 2,4-dione
PDF
Album
Supp Info
Letter
Published 09 Apr 2020

Cascade trifluoromethylthiolation and cyclization of N-[(3-aryl)propioloyl]indoles

  • Ming-Xi Bi,
  • Shuai Liu,
  • Yangen Huang,
  • Xiu-Hua Xu and
  • Feng-Ling Qing

Beilstein J. Org. Chem. 2020, 16, 657–662, doi:10.3762/bjoc.16.62

Graphical Abstract
  • intermediate A, followed by oxidation with (NH4)2S2O8, gave intermediate C [21][42][43][44][45][46][47]. Finally, deprotonation of intermediate C (R2 ≠ H) with NaHCO3 delivered the aromatized product 4. In the case of intermediate C (R2 = H), intermediate D was probably formed, and further underwent
PDF
Album
Supp Info
Letter
Published 08 Apr 2020

Exploring the scope of DBU-promoted amidations of 7-methoxycarbonylpterin

  • Anna R. Bockman and
  • Jeffrey M. Pruet

Beilstein J. Org. Chem. 2020, 16, 509–514, doi:10.3762/bjoc.16.46

Graphical Abstract
  • for ricin toxin A (RTA) inhibitors [14]. By deprotonation of the lactam NH, and conversion to the DBU salt, the pterin easily dissolves in methanol at high concentrations, unprecedented for unfunctionalized pterins. This greatly accelerated the development of a library of bioactive pterins, as it
PDF
Album
Supp Info
Full Research Paper
Published 26 Mar 2020

Recent advances in photocatalyzed reactions using well-defined copper(I) complexes

  • Mingbing Zhong,
  • Xavier Pannecoucke,
  • Philippe Jubault and
  • Thomas Poisson

Beilstein J. Org. Chem. 2020, 16, 451–481, doi:10.3762/bjoc.16.42

Graphical Abstract
  • provide a transient radical, which undergoes an intramolecular cyclization to give the aryl radical anion. A final oxidation/deprotonation sequence delivers the product. In 2018, Reiser and co-workers reported the use of the [Cu(dap)2]Cl catalyst in the oxoazidation of styrene derivatives (Scheme 14) [30
  • from the oxidation of the amine with the formed [Cu(II)] complex, followed by a deprotonation by DABCO. The resulting alkoxide is finally converted into the alcohol by the protonated DABCO. During this study, the authors found that replacement of the base by the Brønsted acid (R)-1,1-binaphtyl-2,2-diyl
PDF
Album
Review
Published 23 Mar 2020

Synthesis of 4-amino-5-fluoropyrimidines and 5-amino-4-fluoropyrazoles from a β-fluoroenolate salt

  • Tobias Lucas,
  • Jule-Philipp Dietz and
  • Till Opatz

Beilstein J. Org. Chem. 2020, 16, 445–450, doi:10.3762/bjoc.16.41

Graphical Abstract
  • hydrazine on the more reactive carbon atom of the fluoroenolate in a Michael-type addition. The cyclization did not require a deprotonation of the RNH moiety. Conclusion In summary, a synthesis of fluorinated pyrimidines under mild conditions using fluoroenolate 8 and amidines in a cyclocondensation was
PDF
Album
Supp Info
Full Research Paper
Published 20 Mar 2020

Synthesis of six-membered silacycles by borane-catalyzed double sila-Friedel–Crafts reaction

  • Yafang Dong,
  • Masahiko Sakai,
  • Kazuto Fuji,
  • Kohei Sekine and
  • Yoichiro Kuninobu

Beilstein J. Org. Chem. 2020, 16, 409–414, doi:10.3762/bjoc.16.39

Graphical Abstract
  • their corresponding phenoxasilin derivatives 3b and 3c in 66 and 74% yield, respectively. The yields of 3b and 3c were improved to 83 and 91% in the presence of a catalytic amount of 2,6-lutidine, probably due to the acceleration of the deprotonation step by 2,6-lutidine [33]. In the case of
PDF
Album
Supp Info
Letter
Published 17 Mar 2020

Visible-light-induced addition of carboxymethanide to styrene from monochloroacetic acid

  • Kaj M. van Vliet,
  • Nicole S. van Leeuwen,
  • Albert M. Brouwer and
  • Bas de Bruin

Beilstein J. Org. Chem. 2020, 16, 398–408, doi:10.3762/bjoc.16.38

Graphical Abstract
  • ). Therefore, we focused on methods to trap the HCl from solution (see Table 2). An addition of 2,6-lutidine as a base leads to a lower conversion. Although the addition of a base is an efficient method to remove HCl, deprotonation of monochloroacetic acid leads to an anionic species that is harder to reduce
PDF
Album
Supp Info
Full Research Paper
Published 16 Mar 2020

Room-temperature Pd/Ag direct arylation enabled by a radical pathway

  • Amy L. Mayhugh and
  • Christine K. Luscombe

Beilstein J. Org. Chem. 2020, 16, 384–390, doi:10.3762/bjoc.16.36

Graphical Abstract
  • proposed mechanisms for direct arylation (Scheme 2). Amongst these mechanisms, the most widely accepted is the concerted metalation–deprotonation (CMD) pathway [21]. Within the indole direct-arylation literature, however, there remains much discussion of an electrophilic metalation mechanism, with the
PDF
Album
Supp Info
Full Research Paper
Published 13 Mar 2020

Architecture and synthesis of P,N-heterocyclic phosphine ligands

  • Wisdom A. Munzeiwa,
  • Bernard Omondi and
  • Vincent O. Nyamori

Beilstein J. Org. Chem. 2020, 16, 362–383, doi:10.3762/bjoc.16.35

Graphical Abstract
  • suitable bases. The metalation reaction is prone to side reactions when carried out at higher temperatures and as such, the reaction must be carried out below 0 °C. For example, pyridyllithium derivatives as intermediates can be subjected to deprotonation, substrate addition and pyridine formation due to
  • chloropyridylphosphine 14 with PhPLi2. In a similar manner, the hexadentate pyridylphosphine 16 was synthesized: Firstly, PhPH2 was treated with an equivalent amount of n-BuLi to afford LiPHPh. The latter was then reacted with 14, followed by deprotonation with n-BuLi and reaction with 0.5 equiv CH2Br2 to afford
PDF
Album
Review
Published 12 Mar 2020

Oligomeric ricinoleic acid preparation promoted by an efficient and recoverable Brønsted acidic ionic liquid

  • Fei You,
  • Xing He,
  • Song Gao,
  • Hong-Ru Li and
  • Liang-Nian He

Beilstein J. Org. Chem. 2020, 16, 351–361, doi:10.3762/bjoc.16.34

Graphical Abstract
  • the cation of IL and attacks the intermediate A (step I), generating a tetrahedral intermediate B. Finally, dehydration and deprotonation of the tetrahedral intermediate occurs (step II), forming dimeric ricinoleic acid C. The carboxyl and hydroxy groups in the dimeric ricinoleic acid may further
PDF
Album
Supp Info
Full Research Paper
Published 10 Mar 2020

Formal preparation of regioregular and alternating thiophene–thiophene copolymers bearing different substituents

  • Atsunori Mori,
  • Keisuke Fujita,
  • Chihiro Kubota,
  • Toyoko Suzuki,
  • Kentaro Okano,
  • Takuya Matsumoto,
  • Takashi Nishino and
  • Masaki Horie

Beilstein J. Org. Chem. 2020, 16, 317–324, doi:10.3762/bjoc.16.31

Graphical Abstract
  • shown to proceed in a dehalogenative manner [3]. We have recently shown that the generation of the organometallic monomer species can alternatively also be achieved by deprotonation, using 2-halo-3-substituted thiophene 2 or 3 with a bulky magnesium amide Knochel–Hauser base (TMPMgCl⋅LiCl) [7], followed
  • coupling is followed by chlorination, this protocol exploits the improved deprotonation efficiency of 2 toward 3’-unsubstituted 3-substituted bithiophene, and this method enabled the synthesis of 4 (where R1 = H) regioselectively. Polymerization of 4 (where R1 = n-hexyl and R2 = (CH2)4Si(Me2)OSiMe3) was
  • with monomer precursors 4 by deprotonation with Knochel–Hauser base followed by the addition of the nickel catalyst NiCl2(PPh3)IPr to initiate the polymerization of bithiophene. We first carried out the polymerization of chlorobithiophene 4a, bearing hexyl and methyl substituents at the 3- and 3
PDF
Album
Full Research Paper
Published 05 Mar 2020

Recent developments in photoredox-catalyzed remote ortho and para C–H bond functionalizations

  • Rafia Siddiqui and
  • Rashid Ali

Beilstein J. Org. Chem. 2020, 16, 248–280, doi:10.3762/bjoc.16.26

Graphical Abstract
  • seen in Figure 8, the mechanism of the reaction commences with the deprotonation of the biphenyl carboxylic acid 36, followed by the reaction of 38 with dimethyl dicarbonate (DMDC) to generate compound 39. On the other hand, the photocatalyst is excited by metal–ligand charge transfer, which produces
  • an intermediate radical anion 40 via SET. Then, the intermediate 40 yields the acylated radical 41 by fragmentation, which, upon intramolecular addition, followed by one-electron oxidation and deprotonation, gives the desired product 37. C–H thiolation Synthesis of benzothiazoles via aerobic C–H
  • triflyl chloride (64) by SET gives the highly energetic compound 66, which combines with 88 to give 94. The oxidation of 94 by 92 generates an intermediate 95, which, upon further deprotonation, produces the desired product 89 (Figure 14). C–H lactonization: synthesis of benzo-3,4-coumarins Benzo-3,4
PDF
Album
Review
Published 26 Feb 2020

Potent hemithioindigo-based antimitotics photocontrol the microtubule cytoskeleton in cellulo

  • Alexander Sailer,
  • Franziska Ermer,
  • Yvonne Kraus,
  • Rebekkah Bingham,
  • Ferdinand H. Lutter,
  • Julia Ahlfeld and
  • Oliver Thorn-Seshold

Beilstein J. Org. Chem. 2020, 16, 125–134, doi:10.3762/bjoc.16.14

Graphical Abstract
  • deprotonation of the hydroxy group, and that the lack of observable photoswitchability arose due to fast free rotation around the C–C single bond connecting the thioindigo and hemistilbene motifs. Interestingly, in neutral or acidic aqueous media where the quinoidal structure is not present (λmax ca. 370, 480
PDF
Album
Supp Info
Full Research Paper
Published 27 Jan 2020

Terpenes

  • Jeroen S. Dickschat

Beilstein J. Org. Chem. 2019, 15, 2966–2967, doi:10.3762/bjoc.15.292

Graphical Abstract
  • generate a highly reactive cationic intermediate that can be subject to a cascade reaction through typical carbocation chemistry, including cyclisation reactions, hydride migrations and Wagner–Meerwein rearrangements [1][2]. The cascade is usually terminated by deprotonation or attack of water. The
PDF
Editorial
Published 13 Dec 2019
Other Beilstein-Institut Open Science Activities