Search results

Search for "key intermediate" in Full Text gives 277 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

The simple production of nonsymmetric quaterpyridines through Kröhnke pyridine synthesis

  • Isabelle Sasaki,
  • Jean-Claude Daran and
  • Gérard Commenges

Beilstein J. Org. Chem. 2015, 11, 1781–1785, doi:10.3762/bjoc.11.193

Graphical Abstract
  • (2) in the presence of ammonium acetate and gave 6-acetyl-2,2’:6’,2’’-terpyridine (4). This intermediate was cited by Potts [28] but to our knowledge, was not described. During the preparation of nonsymmetric quaterpyridines, 6-acetyl-2,2’:6’,2’’-terpyridine (4) is the key intermediate. Recently
PDF
Album
Supp Info
Letter
Published 30 Sep 2015

Dimethylamine as the key intermediate generated in situ from dimethylformamide (DMF) for the synthesis of thioamides

  • Weibing Liu,
  • Cui Chen and
  • Hailing Liu

Beilstein J. Org. Chem. 2015, 11, 1721–1726, doi:10.3762/bjoc.11.187

Graphical Abstract
  • ., Haidian District, Beijing 100875, P. R. China; Tel: +86-15010928428 10.3762/bjoc.11.187 Abstract An improved and efficient method for the synthesis of thioamides is presented. For this transformation, dimethylamine as the key intermediate is generated in situ from dimethylformamide (DMF). All the tested
PDF
Album
Supp Info
Full Research Paper
Published 23 Sep 2015

Towards inhibitors of glycosyltransferases: A novel approach to the synthesis of 3-acetamido-3-deoxy-D-psicofuranose derivatives

  • Maroš Bella,
  • Miroslav Koóš and
  • Chun-Hung Lin

Beilstein J. Org. Chem. 2015, 11, 1547–1552, doi:10.3762/bjoc.11.170

Graphical Abstract
  • protected open-chain form of 3-acetamido-3-deoxy-D-psicose, namely 3-acetamido-3-deoxy-4,5-O-isopropylidene-6-O-pivaloyl-1-O-trityl-D-psicose (7) in an excellent yield (Scheme 1). This compound represents the key intermediate for the further synthesis of 3-acetamido-3-deoxy-D-psicofuranose derivatives
PDF
Album
Supp Info
Full Research Paper
Published 04 Sep 2015

Selected synthetic strategies to cyclophanes

  • Sambasivarao Kotha,
  • Mukesh E. Shirbhate and
  • Gopalkrushna T. Waghule

Beilstein J. Org. Chem. 2015, 11, 1274–1331, doi:10.3762/bjoc.11.142

Graphical Abstract
PDF
Album
Review
Published 29 Jul 2015

The synthesis of active pharmaceutical ingredients (APIs) using continuous flow chemistry

  • Marcus Baumann and
  • Ian R. Baxendale

Beilstein J. Org. Chem. 2015, 11, 1194–1219, doi:10.3762/bjoc.11.134

Graphical Abstract
  • worked well. As seen above, avoiding detrimental exotherms in scale up campaigns is a common reason for developing a continuous flow process. This approach is also demonstrated in the synthesis of the pyrrolotriazinone 73 via a exothermic oxidative rearrangement from 75, a key intermediate towards
  • key intermediate 83 at pilot-scale, a flow-based asymmetric hydrogenation was chosen as an economically more viable option compared to establishing a high-pressure batch process. As depicted in Scheme 14, solutions of the substrate 84 and a zinc triflate additive were combined with the rhodium
PDF
Album
Review
Published 17 Jul 2015

Advances in the synthesis of functionalised pyrrolotetrathiafulvalenes

  • Luke J. O’Driscoll,
  • Sissel S. Andersen,
  • Marta V. Solano,
  • Dan Bendixen,
  • Morten Jensen,
  • Troels Duedal,
  • Jess Lycoops,
  • Cornelia van der Pol,
  • Rebecca E. Sørensen,
  • Karina R. Larsen,
  • Kenneth Myntman,
  • Christian Henriksen,
  • Stinne W. Hansen and
  • Jan O. Jeppesen

Beilstein J. Org. Chem. 2015, 11, 1112–1122, doi:10.3762/bjoc.11.125

Graphical Abstract
  • ) are versatile functional groups in many areas of chemistry. The large-scale synthesis of the key intermediate 6 improves the accessibility of these species and their derivatives. The related species 7 can be used to prepare further analogues. Compounds 6 and 7 can both be used to prepare BPTTFs and
PDF
Album
Supp Info
Full Research Paper
Published 03 Jul 2015

A hybrid electron donor comprising cyclopentadithiophene and dithiafulvenyl for dye-sensitized solar cells

  • Gleb Sorohhov,
  • Chenyi Yi,
  • Michael Grätzel,
  • Silvio Decurtins and
  • Shi-Xia Liu

Beilstein J. Org. Chem. 2015, 11, 1052–1059, doi:10.3762/bjoc.11.118

Graphical Abstract
  • , the synthesis of the key intermediate 7 involves the protection of one aldehyde group as an acetal using pinacol prior to HWE reaction of 5 with 4,5-bis(hexylthio)-1,3-dithiole-2-thione, followed by deprotection under acidic conditions. Aldehyde 5 was readily obtained by palladium-catalyzed Suzuki
PDF
Album
Full Research Paper
Published 22 Jun 2015

Photocatalytic nucleophilic addition of alcohols to styrenes in Markovnikov and anti-Markovnikov orientation

  • Martin Weiser,
  • Sergej Hermann,
  • Alexander Penner and
  • Hans-Achim Wagenknecht

Beilstein J. Org. Chem. 2015, 11, 568–575, doi:10.3762/bjoc.11.62

Graphical Abstract
  • additive. Photocatalytic additions of a variety of alcohols gave the corresponding products in good to excellent yields. The proposed photocatalytic electron transfer mechanism was supported by detection of the PDI radical anion as key intermediate and by comparison of two intramolecular reactions with
  • protonated rapidly to the neutral radical that is the key intermediate to explain the Markovnikov selectivity of this route. Both steps, electron transfer and protonation, could also occur in one proton-coupled electron transfer step. Back electron transfer to the photocatalyst finishes the photocatalytic
  • the corresponding products in good to excellent yields. Similar to the reductive mode, the oxidative nucleophilic addition needed the additive Ph–SH as electron and proton shuttle. The proposed photocatalytic electron transfer mechanism was supported by the observation of the PDI radical anion as key
PDF
Album
Supp Info
Full Research Paper
Published 27 Apr 2015

Diastereoselective and enantioselective conjugate addition reactions utilizing α,β-unsaturated amides and lactams

  • Katherine M. Byrd

Beilstein J. Org. Chem. 2015, 11, 530–562, doi:10.3762/bjoc.11.60

Graphical Abstract
  • and co-workers performed the rhodium-catalyzed ECA of 51 to yield 4-arylpiperidinone 52. Compound 52 is a key intermediate in the synthesis of the pharmaceutical agent, (−)-paroxetine [142] (Scheme 13). In 2001, Sakuma and Miyaura reported the first rhodium-catalyzed asymmetric 1,4-addition of α,β
PDF
Album
Review
Published 23 Apr 2015

Copper-catalyzed cascade reactions of α,β-unsaturated esters with keto esters

  • Zhengning Li,
  • Chongnian Wang and
  • Zengchang Li

Beilstein J. Org. Chem. 2015, 11, 213–218, doi:10.3762/bjoc.11.23

Graphical Abstract
  • conjugate reduction of the α,β-unsaturated diester with newly generated copper hydride, followed by aldol reaction to yield the key intermediate alkoxide A, which is subjected to further lactonization to form the lactone. Lam’s group has furnished a cobalt-catalyzed conjugate reductive aldolization
  • of γ-carboxy-γ-lactones via a copper-catalyzed cascade reaction. Considering that the reported conjugate addition–aldolization–lactonization cascade reactions proceed via the key intermediate A in Figure 1, we envisioned that the conjugate reduction of a methacrylate and the following aldol reaction
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2015

Electrochemical selenium- and iodonium-initiated cyclisation of hydroxy-functionalised 1,4-dienes

  • Philipp Röse,
  • Steffen Emge,
  • Jun-ichi Yoshida and
  • Gerhard Hilt

Beilstein J. Org. Chem. 2015, 11, 174–183, doi:10.3762/bjoc.11.18

Graphical Abstract
  • which takes place exclusively at the internal carbon of the double bond of the terminal alkene (C2) and C4 of the 1-aryl-substituted 1,3-diene. The key intermediate A in the reaction mechanism is proposed to be a cobaltacycle which only allows the double bond generated from the 1,3-diene component to
PDF
Album
Supp Info
Full Research Paper
Published 28 Jan 2015

A carbohydrate approach for the formal total synthesis of (−)-aspergillide C

  • Pabbaraja Srihari,
  • Namballa Hari Krishna,
  • Ydhyam Sridhar and
  • Ahmed Kamal

Beilstein J. Org. Chem. 2014, 10, 3122–3126, doi:10.3762/bjoc.10.329

Graphical Abstract
  • achieved the formal total synthesis of (−)-aspergillide C. Conclusion In conclusion, a formal total synthesis of (−)-aspergillide C has been achieved through a concise, stereocontrolled synthesis of the known key intermediate 4 in 8 steps with an overall yield of 36.9% starting from commercially available
PDF
Album
Supp Info
Letter
Published 23 Dec 2014

The Shono-type electroorganic oxidation of unfunctionalised amides. Carbon–carbon bond formation via electrogenerated N-acyliminium ions

  • Alan M. Jones and
  • Craig E. Banks

Beilstein J. Org. Chem. 2014, 10, 3056–3072, doi:10.3762/bjoc.10.323

Graphical Abstract
  • α-amino nitrile, reinstalled the N-acyliminium ion. Reduction of the N-acyliminium afforded the major diastereoisomer as shown in Scheme 14 in 79% after column chromatography. Further synthetic modification of this key intermediate afforded the total synthesis of (+)-myrtine (66) in a further 5
PDF
Album
Review
Published 18 Dec 2014

First chemoenzymatic stereodivergent synthesis of both enantiomers of promethazine and ethopropazine

  • Paweł Borowiecki,
  • Daniel Paprocki and
  • Maciej Dranka

Beilstein J. Org. Chem. 2014, 10, 3038–3055, doi:10.3762/bjoc.10.322

Graphical Abstract
  • , mainly associated with periodontitis and osteoporosis. Moreover, kinetic resolution of the enantiomers of the key intermediate 1-(10H-phenothiazin-10-yl)propan-2-ol may simultaneously provide access to another valuable compound in enantioenriched form, that is: ethopropazine (profenamine). In turn, this
PDF
Album
Supp Info
Full Research Paper
Published 18 Dec 2014

Synthetic strategies for the fluorescent labeling of epichlorohydrin-branched cyclodextrin polymers

  • Milo Malanga,
  • Mihály Bálint,
  • István Puskás,
  • Kata Tuza,
  • Tamás Sohajda,
  • László Jicsinszky,
  • Lajos Szente and
  • Éva Fenyvesi

Beilstein J. Org. Chem. 2014, 10, 3007–3018, doi:10.3762/bjoc.10.319

Graphical Abstract
  • (i.e., RBIT, NBF-Cl, FITC) or nucleophilic fluorescent dye (i.e., coumarin) into the polymers, respectively. The key intermediate azido-modified polymers have been used as precursor of the amino-modified polymers, but they can be considered as versatile substrates for cycloaddition reactions as well
PDF
Album
Supp Info
Full Research Paper
Published 16 Dec 2014

Recent advances in the electrochemical construction of heterocycles

  • Robert Francke

Beilstein J. Org. Chem. 2014, 10, 2858–2873, doi:10.3762/bjoc.10.303

Graphical Abstract
  • has to be carried out at 0 °C in order to stabilize the reactive alkoxysulfonium species. Analogously to Swern- and Moffat-type reactions, this key intermediate is then converted to ketone 8 by quenching with NEt3 at slightly elevated temperatures under elimination of dimethyl sulfide. Alternatively
PDF
Album
Review
Published 03 Dec 2014

Stereoselective synthesis of perillaldehyde-based chiral β-amino acid derivatives through conjugate addition of lithium amides

  • Zsolt Szakonyi,
  • Reijo Sillanpää and
  • Ferenc Fülöp

Beilstein J. Org. Chem. 2014, 10, 2738–2742, doi:10.3762/bjoc.10.289

Graphical Abstract
  • ]. Results and Discussion The key intermediate Michael acceptor, tert-butyl perillate (3), was prepared by a combination of literature protocols, starting from commercially available (−)-(4S)-perillaldehyde (1) in a two-step reaction. First, oxidation of 1 led to perillic acid (2) [36], which was
PDF
Album
Supp Info
Full Research Paper
Published 21 Nov 2014

Formal total syntheses of classic natural product target molecules via palladium-catalyzed enantioselective alkylation

  • Yiyang Liu,
  • Marc Liniger,
  • Ryan M. McFadden,
  • Jenny L. Roizen,
  • Jacquie Malette,
  • Corey M. Reeves,
  • Douglas C. Behenna,
  • Masaki Seto,
  • Jimin Kim,
  • Justin T. Mohr,
  • Scott C. Virgil and
  • Brian M. Stoltz

Beilstein J. Org. Chem. 2014, 10, 2501–2512, doi:10.3762/bjoc.10.261

Graphical Abstract
  • to the compound’s natural antipode. Our lab’s novel approach to (−)-quinic acid (21) allowed access to either enantiomer of this important substance. We have also intercepted a key intermediate in Danishefsky’s synthesis of (±)-dysidiolide (29), rendering the former racemic route enantioselective
PDF
Album
Supp Info
Full Research Paper
Published 28 Oct 2014

Syntheses of 15N-labeled pre-queuosine nucleobase derivatives

  • Jasmin Levic and
  • Ronald Micura

Beilstein J. Org. Chem. 2014, 10, 1914–1918, doi:10.3762/bjoc.10.199

Graphical Abstract
  • synthetic track for the [15N3]-preQ1 base (1) was designed with the concept in mind to access the complementary 15N patterns of [15N9]-preQ1 base (2) and [H215N(C7')]-preQ1 base (3) by employing the same key steps. In this sense, the key intermediate [H215N(C6)]-2,6-diaminopyrimidin-4-one (13) for target 2
  • convenient. First, we prepared the 15N-labeled aldehyde 18 as the key intermediate (Scheme 4). This was achieved by reaction of 3-chloropropanol (15) with [15N]-phthalimide 16 to give [15N]-3-phthalimidopropan-1-ol (17). All further steps were in direct analogy as described for targets 1 and 2, namely
PDF
Album
Supp Info
Full Research Paper
Published 18 Aug 2014

Application of cyclic phosphonamide reagents in the total synthesis of natural products and biologically active molecules

  • Thilo Focken and
  • Stephen Hanessian

Beilstein J. Org. Chem. 2014, 10, 1848–1877, doi:10.3762/bjoc.10.195

Graphical Abstract
  • tetrahydropyran 92 as key intermediate of the synthesis. Oxidation of 92 and heating to 220 ºC resulted in a concurrent selenoxide elimination and Claisen rearrangement to give 93 via intermediate 81. Face-selective Simmons–Smith cyclopropanation, reduction of both carbonyl groups, and chemoselective oxidation of
PDF
Album
Review
Published 13 Aug 2014

Proton transfers in the Strecker reaction revealed by DFT calculations

  • Shinichi Yamabe,
  • Guixiang Zeng,
  • Wei Guan and
  • Shigeyoshi Sakaki

Beilstein J. Org. Chem. 2014, 10, 1765–1774, doi:10.3762/bjoc.10.184

Graphical Abstract
  • imine plane reinforces the CN− to attack the imine group below the plane. The enforcement hinders the scrambling. In the second stage, the aminonitrile transforms to alanine, where an amide Me-CH(NH2)-C(=O)-NH2 is the key intermediate. The rate-determining step is the hydrolysis of the cyano group of N
  • alanine in the acidic solution. The traditional Strecker reaction gave racemic α-aminonitriles (mixtures of equal amounts of R and S forms), where an imine RCH=NH was considered to be the key intermediate [2]. Three typical reactions are presented in Scheme 1(b) [3]. In 1963, Harada reported the first
PDF
Album
Supp Info
Full Research Paper
Published 01 Aug 2014

Synthesis of rigid p-terphenyl-linked carbohydrate mimetics

  • Maja Kandziora and
  • Hans-Ulrich Reissig

Beilstein J. Org. Chem. 2014, 10, 1749–1758, doi:10.3762/bjoc.10.182

Graphical Abstract
  • bicyclic 1,2-oxazine derivative 3 was used as key building block for the Suzuki cross-coupling reaction to synthesize p-terphenyl-linked derivatives 1. The key intermediate 3 was prepared by a Lewis acid-induced rearrangement of 3,6-dihydro-2H-oxazine 4, that origins from a stereoselective [3 + 3
PDF
Album
Supp Info
Full Research Paper
Published 30 Jul 2014

Concise total synthesis of two marine natural nucleosides: trachycladines A and B

  • Haixin Ding,
  • Wei Li,
  • Zhizhong Ruan,
  • Ruchun Yang,
  • Zhijie Mao,
  • Qiang Xiao and
  • Jun Wu

Beilstein J. Org. Chem. 2014, 10, 1681–1685, doi:10.3762/bjoc.10.176

Graphical Abstract
  • ), nucleoside 3 could be synthesized by using 1,2,3,5-tetra-O-benzoyl-2-C-methyl-D-ribofuranose (5) as a carbohydrate acceptor by a Vorbrüggen glycosylation with the corresponding silylated nucleobases and a Lewis acid as a catalyst. As the key intermediate for the preparation of the anti-HCV nucleoside
  • synthetic stage, carbohydrate 4 is a versatile intermediate for the diversity-oriented synthesis of the related 2′-C-β-methyl-5′-deoxyribonucleosides. As the key intermediate for the preparation of the antitumor drug capecitabine [24][25], 5-deoxy-1,2,3-tri-O-acetyl-β-D-ribofuranose (6) is commercially
  • environment of 2-OH the benzoylation with benzoyl chloride required an extended reaction time (48 h) and 2 equiv DMAP as base and catalyst. At last, the 1-O-methyl group was transformed to 1-O-acetate glycosylation acceptor 4 as an anomeric mixture (α:β = 2:3) in 84% yield. Therefore, the key intermediate 4
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2014

C–H-Functionalization logic guides the synthesis of a carbacyclopamine analog

  • Sebastian Rabe,
  • Johann Moschner,
  • Marina Bantzi,
  • Philipp Heretsch and
  • Athanassios Giannis

Beilstein J. Org. Chem. 2014, 10, 1564–1569, doi:10.3762/bjoc.10.161

Graphical Abstract
  • conditions (LiOH, THF/H2O, 1:1, 68% yield for the two steps), and the alcohol moieties were protected as formyl esters (formic acid, 50 °C, 85% yield) to give key intermediate 10. Employing the formyl protecting groups [32], diazoketone 3 (for its structure see Scheme 1) was readily obtained from acid 10 via
  • analog that still exhibits similar inhibitory activity on hedgehog-signaling. For the sake of brevity of the overall synthetic sequence we defined carbacyclopamine analog 2 (see Figure 1) as our primary target. Results and Discussion A retrosynthetic analysis identified diazo compound 3 as a key
  • intermediate in the synthesis of 2 (see Scheme 1). We envisioned a rhodium-catalyzed C–H-insertion into the C17–H bond to occur with a high degree of selectivity (both regio- and stereoselectivity) to form the all-carbon E-ring (for its structure see 11, Scheme 2). Furthermore, a Wagner–Meerwein rearrangement
PDF
Album
Supp Info
Full Research Paper
Published 09 Jul 2014

Rational design of cyclopropane-based chiral PHOX ligands for intermolecular asymmetric Heck reaction

  • Marina Rubina,
  • William M. Sherrill,
  • Alexey Yu. Barkov and
  • Michael Rubin

Beilstein J. Org. Chem. 2014, 10, 1536–1548, doi:10.3762/bjoc.10.158

Graphical Abstract
  • -Bu substituent in the dihydrooxazole ring of the ligand resulted in a reversal of enantioselectivity. Such an unexpected change in the catalyst selectivity motivated us to perform structural analysis of the key intermediate complexes invoked in the catalytic cycle of the Heck arylation. First, we
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2014
Other Beilstein-Institut Open Science Activities