Search for "6-endo cyclization" in Full Text gives 18 result(s) in Beilstein Journal of Organic Chemistry.
Beilstein J. Org. Chem. 2025, 21, 1324–1373, doi:10.3762/bjoc.21.101
Graphical Abstract
Figure 1: Bond lengths and bond angles in oxetane at 140 K [2].
Figure 2: Analogy of 3-substituted oxetanes to carbonyl and gem-dimethyl groups [12].
Figure 3: Use of oxetanes in drug design – selected examples.
Figure 4: Examples of oxetane-containing natural products.
Scheme 1: Synthetic strategies towards construction of the oxetane ring.
Scheme 2: Overview of intramolecular Williamson etherification and competing Grob fragmentation.
Scheme 3: Synthesis of spiro-oxetanes via 1,4-C–H insertion and Williamson etherification.
Scheme 4: Use of phenyl vinyl selenone in the synthesis of spirooxindole oxetanes.
Scheme 5: Synthesis of bicyclic 3,5-anhydrofuranoses via double epoxide opening/etherification.
Scheme 6: Preparation of spirooxetanes by cycloisomerisation via MHAT/RPC.
Scheme 7: Oxetane synthesis via alcohol C–H functionalisation.
Scheme 8: Access to oxetanes 38 from α-acetyloxy iodides.
Scheme 9: The kilogram-scale synthesis of oxetane intermediate 41.
Scheme 10: Overview of the intramolecular opening of 3-membered rings.
Scheme 11: Synthesis of 4,7-dioxatricyclo[3.2.1.03,6]octane skeletons.
Scheme 12: Silicon-directed electrophilic cyclisation of homoallylic alcohols.
Scheme 13: Hydrosilylation–iodocyclisation of homopropargylic alcohols.
Scheme 14: Cu-catalysed intramolecular O-vinylation of γ-bromohomoallylic alcohols.
Scheme 15: Cu-catalysed intramolecular cross-coupling of hydroxyvinylstannanes.
Scheme 16: Isomerisation of oxiranyl ethers containing weakly carbanion-stabilising groups.
Scheme 17: Cyclisation of diethyl haloalkoxymalonates.
Scheme 18: Synthesis of oxetanes through a 1,5-HAT/radical recombination sequence.
Scheme 19: General approach to oxetanes via [2 + 2] cycloadditions.
Scheme 20: Synthesis of tricyclic 4:4:4 oxetanes through a photochemical triple cascade reaction.
Scheme 21: Iridium-catalysed Paternò–Büchi reaction between α-ketoesters and simple alkenes.
Scheme 22: Three-step synthesis of spirocyclic oxetanes 83 via Paternò–Büchi reaction, nucleophilic ring openi...
Scheme 23: Enantioselective Paternò–Büchi reaction catalysed by a chiral iridium photocatalyst.
Scheme 24: Synthesis of polysubstituted oxetanes 92 via Cu(II)-mediated formal [2 + 2] cycloadditions.
Scheme 25: Synthesis of alkylideneoxetanes via NHC- and DBU-mediated formal [2 + 2] cycloadditions.
Scheme 26: Use of sulphur-stabilised carbanions in ring expansions.
Scheme 27: Synthesis of α,α-difluoro(arylthio)methyl oxetanes.
Scheme 28: Ring expansion in an industrial synthesis of PF-06878031.
Scheme 29: Ring contraction of triflated 2-hydroxy-γ-lactones.
Scheme 30: Ring contraction in an industrial synthesis of PF-06878031.
Scheme 31: Photochemical ring contraction of 2,5-dihydrofurans by aryldiazoacetic acid esters.
Scheme 32: Synthesis of 3-oxetanones via O-H insertion of carbenes.
Scheme 33: Synthesis of phosphonate oxetanones via gold-mediated alkyne oxidation/O–H insertion.
Scheme 34: Syntheses and common derivatisations of 3-oxetanone.
Scheme 35: SN1 substitution of 3-aryloxetan-3-ols by thiols and alcohols.
Scheme 36: Fe–Ni dual-catalytic olefin hydroarylation towards 3-alkyl-3-(hetero)aryloxetanes.
Scheme 37: Synthesis of 3-aryloxetan-3-carboxylic acids.
Scheme 38: Decarboxylative alkylation of 3-aryloxetan-3-carboxylic acids.
Scheme 39: Synthesis of 3-amino-3-aryloxetanes via photoredox/nickel cross-coupling catalysis.
Scheme 40: Intermolecular cross-selective [2 + 2] photocycloaddition towards spirooxetanes.
Scheme 41: Synthesis of 3-aryl-3-aminooxetanes via defluorosulphonylative coupling.
Scheme 42: Two-step synthesis of amide bioisosteres via benzotriazolyl Mannich adducts 170.
Scheme 43: Functionalisation of oxetanyl trichloroacetimidates 172.
Scheme 44: Synthesis of oxetane-amino esters 176.
Scheme 45: Tandem Friedel–Crafts alkylation/intramolecular ring opening of 3-aryloxetan-3-ols.
Scheme 46: Synthesis of polysubstituted furans and pyrroles.
Scheme 47: Synthesis of oxazolines and bisoxazolines.
Scheme 48: Tandem, one-pot syntheses of various polycyclic heterocycles.
Scheme 49: Synthesis of 1,2-dihydroquinolines via skeletal reorganisation of oxetanes.
Scheme 50: Synthesis of benzoindolines and 2,3-dihydrobenzofurans and their derivatisations.
Scheme 51: Synthesis of polysubstituted 1,4-dioxanes.
Scheme 52: Preparation of various lactones via ring opening of oxetane-carboxylic acids 219.
Scheme 53: Tsuji-Trost allylation/ring opening of 3-aminooxetanes.
Scheme 54: Arylative skeletal rearrangement of 3-vinyloxetan-3-ols to 2,5-dihydrofurans.
Scheme 55: Reductive opening of oxetanes using catalytic Mg–H species.
Scheme 56: Opening of oxetanes by silyl ketene acetals.
Scheme 57: Rhodium-catalysed hydroacylation of oxetanes.
Scheme 58: Generation of radicals from oxetanes mediated by a vitamin B12-derived cobalt catalyst.
Scheme 59: Reductive opening of oxetanes by B–Si frustrated Lewis pairs.
Scheme 60: Zirconocene-mediated reductive opening of oxetanes.
Scheme 61: Enantioselective syntheses of small and medium-size rings using chiral phosphoric acids.
Scheme 62: Asymmetric synthesis of 2,3-dihydrobenzo[b]oxepines catalysed by a chiral scandium complex.
Scheme 63: Enantioselective synthesis of 1,3-bromohydrins under a chiral squaramide catalysis.
Scheme 64: Enantioselective opening of 2-aryl-2-ethynyloxetanes by anilines.
Scheme 65: Ru-catalysed insertion of diazocarbonyls into oxetanes.
Scheme 66: Ring expansion of oxetanes by stabilised carbenes generated under blue light irradiation.
Scheme 67: Expansion of oxetanes via nickel-catalysed insertion of alkynyltrifluoroborates.
Scheme 68: Nickel-catalysed expansion of oxetanes into ε-caprolactones.
Scheme 69: Expansion of oxetanes via cobalt-catalysed carbonyl insertion.
Scheme 70: Gold-catalysed intramolecular 1,1-carboalkoxylation of oxetane-ynamides.
Scheme 71: Expansion of oxetanes by stabilised sulphoxonium ylides.
Scheme 72: Cu-catalysed ring expansion of 2-vinyloxetanes by diazoesters.
Scheme 73: Total synthesis of (+)-oxetin.
Scheme 74: Total synthesis of racemic oxetanocin A.
Scheme 75: Total synthesis of (−)-merrilactone A.
Scheme 76: Total synthesis of (+)-dictyoxetane.
Scheme 77: Total synthesis of ent-dichrocephone B.
Scheme 78: Total synthesis of (−)-mitrephorone A.
Scheme 79: Total synthesis of (−)-taxol.
Beilstein J. Org. Chem. 2025, 21, 1207–1271, doi:10.3762/bjoc.21.98
Graphical Abstract
Scheme 1: DTBP-mediated oxidative alkylarylation of activated alkenes.
Scheme 2: Iron-catalyzed oxidative 1,2-alkylarylation.
Scheme 3: Possible mechanism for the iron-catalyzed oxidative 1,2-alkylation of activated alkenes.
Scheme 4: A metal-free strategy for synthesizing 3,3-disubstituted oxindoles.
Scheme 5: Iminoxyl radical-promoted cascade oxyalkylation/alkylarylation of alkenes.
Scheme 6: Proposed mechanism for the iminoxyl radical-promoted cascade oxyalkylation/alkylarylation of alkene...
Scheme 7: Bicyclization of 1,n-enynes with alkyl nitriles.
Scheme 8: Possible reaction mechanism for the bicyclization of 1,n-enynes with alkyl nitriles.
Scheme 9: Radical cyclization of N-arylacrylamides with isocyanides.
Scheme 10: Plausible mechanism for the radical cyclization of N-arylacrylamides with isocyanides.
Scheme 11: Electrochemical dehydrogenative cyclization of 1,3-dicarbonyl compounds.
Scheme 12: Plausible mechanism for the dehydrogenative cyclization of 1,3-dicarbonyl compounds.
Scheme 13: Photocatalyzed cyclization of N-arylacrylamide and N,N-dimethylaniline.
Scheme 14: Proposed mechanism for the photocatalyzed cyclization of N-arylacrylamides and N,N-dimethylanilines....
Scheme 15: Electrochemical monofluoroalkylation cyclization of N-arylacrylamides with dimethyl 2-fluoromalonat...
Scheme 16: Proposed mechanism for the electrochemical radical cyclization of N-arylacrylamides with dimethyl 2...
Scheme 17: Photoelectrocatalytic carbocyclization of unactivated alkenes using simple malonates.
Scheme 18: Plausible mechanism for the photoelectrocatalytic carbocyclization of unactivated alkenes with simp...
Scheme 19: Bromide-catalyzed electrochemical trifluoromethylation/cyclization of N-arylacrylamides.
Scheme 20: Proposed mechanism for the electrochemical trifluoromethylation/cyclization of N-arylacrylamides.
Scheme 21: Visible light-mediated trifluoromethylarylation of N-arylacrylamides.
Scheme 22: Plausible reaction mechanism for the visible light-mediated trifluoromethylarylation of N-arylacryl...
Scheme 23: Electrochemical difluoroethylation cyclization of N-arylacrylamides with sodium difluoroethylsulfin...
Scheme 24: Electrochemical difluoroethylation cyclization of N-methyacryloyl-N-alkylbenzamides with sodium dif...
Scheme 25: Photoredox-catalyzed radical aryldifluoromethylation of N-arylacrylamides with S-(difluoromethyl)su...
Scheme 26: Proposed mechanism for the photoredox-catalyzed radical aryldifluoromethylation of N-arylacrylamide...
Scheme 27: Visible-light-induced domino difluoroalkylation/cyclization of N-cyanamide alkenes.
Scheme 28: Proposed mechanism of photoredox-catalyzed radical domino difluoroalkylation/cyclization of N-cyana...
Scheme 29: Palladium-catalyzed oxidative difunctionalization of alkenes.
Scheme 30: Two possible mechanisms of palladium-catalyzed oxidative difunctionalization.
Scheme 31: Silver-catalyzed oxidative 1,2-alkyletherification of unactivated alkenes with α-bromoalkylcarbonyl...
Scheme 32: Photochemical radical cascade cyclization of dienes.
Scheme 33: Proposed mechanism for the photochemical radical cascade 6-endo cyclization of dienes with α-carbon...
Scheme 34: Photocatalyzed radical coupling/cyclization of N-arylacrylamides and.
Scheme 35: Photocatalyzed radical-type couplings/cyclization of N-arylacrylamides with sulfoxonium ylides.
Scheme 36: Possible mechanism of visible-light-induced radical-type couplings/cyclization of N-arylacrylamides...
Scheme 37: Visible-light-promoted difluoroalkylated oxindoles systhesis via EDA complexes.
Scheme 38: Possible mechanism for the visible-light-promoted radical cyclization of N-arylacrylamides with bro...
Scheme 39: A dicumyl peroxide-initiated radical cascade reaction of N-arylacrylamide with DCM.
Scheme 40: Possible mechanism of radical cyclization of N-arylacrylamides with DCM.
Scheme 41: An AIBN-mediated radical cascade reaction of N-arylacrylamides with perfluoroalkyl iodides.
Scheme 42: Possible mechanism for the reaction with perfluoroalkyl iodides.
Scheme 43: Photoinduced palladium-catalyzed radical annulation of N-arylacrylamides with alkyl halides.
Scheme 44: Radical alkylation/cyclization of N-Alkyl-N-methacryloylbenzamides with alkyl halides.
Scheme 45: Possible mechanism for the alkylation/cyclization with unactivated alkyl chlorides.
Scheme 46: Visible-light-driven palladium-catalyzed radical cascade cyclization of N-arylacrylamides with unac...
Scheme 47: NHC-catalyzed radical cascade cyclization of N-arylacrylamides with alkyl bromides.
Scheme 48: Possible mechanism of NHC-catalyzed radical cascade cyclization.
Scheme 49: Electrochemically mediated radical cyclization reaction of N-arylacrylamides with freon-type methan...
Scheme 50: Proposed mechanistic pathway of electrochemically induced radical cyclization reaction.
Scheme 51: Redox-neutral photoinduced radical cascade cylization of N-arylacrylamides with unactivated alkyl c...
Scheme 52: Proposed mechanistic hypothesis of redox-neutral radical cascade cyclization.
Scheme 53: Thiol-mediated photochemical radical cascade cylization of N-arylacrylamides with aryl halides.
Scheme 54: Proposed possible mechanism of thiol-mediated photochemical radical cascade cyclization.
Scheme 55: Visible-light-induced radical cascade bromocyclization of N-arylacrylamides with NBS.
Scheme 56: Possible mechanism of visible-light-induced radical cascade cyclization.
Scheme 57: Decarboxylation/radical C–H functionalization by visible-light photoredox catalysis.
Scheme 58: Plausible mechanism of visible-light photoredox-catalyzed radical cascade cyclization.
Scheme 59: Visible-light-promoted tandem radical cyclization of N-arylacrylamides with N-(acyloxy)phthalimides....
Scheme 60: Plausible mechanism for the tandem radical cyclization reaction.
Scheme 61: Visible-light-induced aerobic radical cascade alkylation/cyclization of N-arylacrylamides with alde...
Scheme 62: Plausible mechanism for the aerobic radical alkylarylation of electron-deficient amides.
Scheme 63: Oxidative decarbonylative [3 + 2]/[5 + 2] annulation of N-arylacrylamide with vinyl acids.
Scheme 64: Plausible mechanism for the decarboxylative (3 + 2)/(5 + 2) annulation between N-arylacrylamides an...
Scheme 65: Rhenium-catalyzed alkylarylation of alkenes with PhI(O2CR)2.
Scheme 66: Plausible mechanism for the rhenium-catalyzed decarboxylative annulation of N-arylacrylamides with ...
Scheme 67: Visible-light-induced one-pot tandem reaction of N-arylacrylamides.
Scheme 68: Plausible mechanism for the visible-light-initiated tandem synthesis of difluoromethylated oxindole...
Scheme 69: Copper-catalyzed redox-neutral cyanoalkylarylation of activated alkenes with cyclobutanone oxime es...
Scheme 70: Plausible mechanism for the copper-catalyzed cyanoalkylarylation of activated alkenes.
Scheme 71: Photoinduced alkyl/aryl radical cascade for the synthesis of quaternary CF3-attached oxindoles.
Scheme 72: Plausible photoinduced electron-transfer (PET) mechanism.
Scheme 73: Photoinduced cerium-mediated decarboxylative alkylation cascade cyclization.
Scheme 74: Plausible reaction mechanism for the decarboxylative radical-cascade alkylation/cyclization.
Scheme 75: Metal-free oxidative tandem coupling of activated alkenes.
Scheme 76: Control experiments and possible mechanism for 1,2-carbonylarylation of alkenes with carbonyl C(sp2...
Scheme 77: Silver-catalyzed acyl-arylation of activated alkenes with α-oxocarboxylic acids.
Scheme 78: Proposed mechanism for the decarboxylative acylarylation of acrylamides.
Scheme 79: Visible-light-mediated tandem acylarylation of olefines with carboxylic acids.
Scheme 80: Proposed mechanism for the radical cascade cyclization with acyl radical via visible-light photored...
Scheme 81: Erythrosine B-catalyzed visible-light photoredox arylation-cyclization of N-arylacrylamides with ar...
Scheme 82: Electrochemical cobalt-catalyzed radical cyclization of N-arylacrylamides with arylhydrazines or po...
Scheme 83: Proposed mechanism of radical cascade cyclization via electrochemical cobalt catalysis.
Scheme 84: Copper-catalyzed oxidative tandem carbamoylation/cyclization of N-arylacrylamides with hydrazinecar...
Scheme 85: Proposed reaction mechanism for the radical cascade cyclization by copper catalysis.
Scheme 86: Visible-light-driven radical cascade cyclization reaction of N-arylacrylamides with α-keto acids.
Scheme 87: Proposed mechanism of visible-light-driven cascade cyclization reaction.
Scheme 88: Peroxide-induced radical carbonylation of N-(2-methylallyl)benzamides with methyl formate.
Scheme 89: Proposed cyclization mechanism of peroxide-induced radical carbonylation with N-(2-methylallyl)benz...
Scheme 90: Persulfate promoted carbamoylation of N-arylacrylamides and N-arylcinnamamides.
Scheme 91: Proposed mechanism for the persulfate promoted radical cascade cyclization reaction of N-arylacryla...
Scheme 92: Photocatalyzed carboacylation with N-arylpropiolamides/N-alkyl acrylamides.
Scheme 93: Plausible mechanism for the photoinduced carboacylation of N-arylpropiolamides/N-alkyl acrylamides.
Scheme 94: Electrochemical Fe-catalyzed radical cyclization with N-arylacrylamides.
Scheme 95: Plausible mechanism for the electrochemical Fe-catalysed radical cyclization of N-phenylacrylamide.
Scheme 96: Substrate scope of the selective functionalization of various α-ketoalkylsilyl peroxides with metha...
Scheme 97: Proposed reaction mechanism for the Fe-catalyzed reaction of alkylsilyl peroxides with methacrylami...
Scheme 98: EDA-complex mediated C(sp2)–C(sp3) cross-coupling of TTs and N-methyl-N-phenylmethacrylamides.
Scheme 99: Proposed mechanism for the synthesis of oxindoles via EDA complex.
Beilstein J. Org. Chem. 2025, 21, 226–233, doi:10.3762/bjoc.21.14
Graphical Abstract
Figure 1: Representative bis-tetrahydroisoquinoline (THIQ) alkaloids and their analogues. Oxygen atoms on bot...
Scheme 1: Strategies for the construction of the pentacyclic core scaffold of saframycin A (1). (a) Biosynthe...
Scheme 2: Streamlined synthesis of the substructure 14 for saframycins 1 within just four steps in overall 29...
Figure 2: UV–vis absorption (gray solid line), the emission spectrum (blue solid line), and the corresponding...
Beilstein J. Org. Chem. 2021, 17, 2848–2893, doi:10.3762/bjoc.17.196
Graphical Abstract
Figure 1: Price comparison among iron and other transition metals used in catalysis.
Scheme 1: Typical modes of C–C bond formation.
Scheme 2: The components of an iron-catalyzed domino reaction.
Scheme 3: Iron-catalyzed tandem cyclization and cross-coupling reactions of iodoalkanes 1 with aryl Grignard ...
Scheme 4: Three component iron-catalyzed dicarbofunctionalization of vinyl cyclopropanes 14.
Scheme 5: Three-component iron-catalyzed dicarbofunctionalization of alkenes 21.
Scheme 6: Double carbomagnesiation of internal alkynes 31 with alkyl Grignard reagents 32.
Scheme 7: Iron-catalyzed cycloisomerization/cross-coupling of enyne derivatives 35 with alkyl Grignard reagen...
Scheme 8: Iron-catalyzed spirocyclization/cross-coupling cascade.
Scheme 9: Iron-catalyzed alkenylboration of alkenes 50.
Scheme 10: N-Alkyl–N-aryl acrylamide 60 CDC cyclization with C(sp3)–H bonds adjacent to a heteroatom.
Scheme 11: 1,2-Carboacylation of activated alkenes 60 with aldehydes 65 and alcohols 67.
Scheme 12: Iron-catalyzed dicarbonylation of activated alkenes 68 with alcohols 67.
Scheme 13: Iron-catalyzed cyanoalkylation/radical dearomatization of acrylamides 75.
Scheme 14: Synergistic photoredox/iron-catalyzed 1,2-dialkylation of alkenes 82 with common alkanes 83 and 1,3...
Scheme 15: Iron-catalyzed oxidative coupling/cyclization of phenol derivatives 86 and alkenes 87.
Scheme 16: Iron-catalyzed carbosulfonylation of activated alkenes 60.
Scheme 17: Iron-catalyzed oxidative spirocyclization of N-arylpropiolamides 91 with silanes 92 and tert-butyl ...
Scheme 18: Iron-catalyzed free radical cascade difunctionalization of unsaturated benzamides 94 with silanes 92...
Scheme 19: Iron-catalyzed cyclization of olefinic dicarbonyl compounds 97 and 100 with C(sp3)–H bonds.
Scheme 20: Radical difunctionalization of o-vinylanilides 102 with ketones and esters 103.
Scheme 21: Dehydrogenative 1,2-carboamination of alkenes 82 with alkyl nitriles 76 and amines 105.
Scheme 22: Iron-catalyzed intermolecular 1,2-difunctionalization of conjugated alkenes 107 with silanes 92 and...
Scheme 23: Four-component radical difunctionalization of chemically distinct alkenes 114/115 with aldehydes 65...
Scheme 24: Iron-catalyzed carbocarbonylation of activated alkenes 60 with carbazates 117.
Scheme 25: Iron-catalyzed radical 6-endo cyclization of dienes 119 with carbazates 117.
Scheme 26: Iron-catalyzed decarboxylative synthesis of functionalized oxindoles 130 with tert-butyl peresters ...
Scheme 27: Iron‑catalyzed decarboxylative alkylation/cyclization of cinnamamides 131/134.
Scheme 28: Iron-catalyzed carbochloromethylation of activated alkenes 60.
Scheme 29: Iron-catalyzed trifluoromethylation of dienes 142.
Scheme 30: Iron-catalyzed, silver-mediated arylalkylation of conjugated alkenes 115.
Scheme 31: Iron-catalyzed three-component carboazidation of conjugated alkenes 115 with alkanes 101/139b and t...
Scheme 32: Iron-catalyzed carboazidation of alkenes 82 and alkynes 160 with iodoalkanes 20 and trimethylsilyl ...
Scheme 33: Iron-catalyzed asymmetric carboazidation of styrene derivatives 115.
Scheme 34: Iron-catalyzed carboamination of conjugated alkenes 115 with alkyl diacyl peroxides 163 and acetoni...
Scheme 35: Iron-catalyzed carboamination using oxime esters 165 and arenes 166.
Scheme 36: Iron-catalyzed iminyl radical-triggered [5 + 2] and [5 + 1] annulation reactions with oxime esters ...
Scheme 37: Iron-catalyzed decarboxylative alkyl etherification of alkenes 108 with alcohols 67 and aliphatic a...
Scheme 38: Iron-catalyzed inter-/intramolecular alkylative cyclization of carboxylic acid and alcohol-tethered...
Scheme 39: Iron-catalyzed intermolecular trifluoromethyl-acyloxylation of styrene derivatives 115.
Scheme 40: Iron-catalyzed carboiodination of terminal alkenes and alkynes 180.
Scheme 41: Copper/iron-cocatalyzed cascade perfluoroalkylation/cyclization of 1,6-enynes 183/185.
Scheme 42: Iron-catalyzed stereoselective carbosilylation of internal alkynes 187.
Scheme 43: Synergistic photoredox/iron catalyzed difluoroalkylation–thiolation of alkenes 82.
Scheme 44: Iron-catalyzed three-component aminoazidation of alkenes 82.
Scheme 45: Iron-catalyzed intra-/intermolecular aminoazidation of alkenes 194.
Scheme 46: Stereoselective iron-catalyzed oxyazidation of enamides 196 using hypervalent iodine reagents 197.
Scheme 47: Iron-catalyzed aminooxygenation for the synthesis of unprotected amino alcohols 200.
Scheme 48: Iron-catalyzed intramolecular aminofluorination of alkenes 209.
Scheme 49: Iron-catalyzed intramolecular aminochlorination and aminobromination of alkenes 209.
Scheme 50: Iron-catalyzed intermolecular aminofluorination of alkenes 82.
Scheme 51: Iron-catalyzed aminochlorination of alkenes 82.
Scheme 52: Iron-catalyzed phosphinoylazidation of alkenes 108.
Scheme 53: Synergistic photoredox/iron-catalyzed three-component aminoselenation of trisubstituted alkenes 82.
Beilstein J. Org. Chem. 2021, 17, 688–704, doi:10.3762/bjoc.17.58
Graphical Abstract
Figure 1: Selected alkaloids containing the pyrrolidone motif.
Scheme 1: A) Classical γ-lactam synthesis by atom transfer radical cyclizations; B) previously developed tand...
Figure 2: X-ray crystal structure of the major (2R,4S)-alkoxyamine hydrochloride derived from 9j. Displacemen...
Scheme 2: Formation of the α-(aminoxy)amides 9o,p.
Figure 3: X-ray crystal structure of the minor cis-diastereomers of the keto lactam 13j (left) and the hydrox...
Scheme 3: Thermal radical cyclization reactions of amides 9l–p bearing cyclic units. Conditions: a) t-BuOH, 1...
Scheme 4: Epimerization of spirolactams 12m,n.
Scheme 5: The Dess–Martin oxidation of lactams 12l–o. Conditions: a) DMP (1.3 equiv), t-BuOH (10 mol %), CH2Cl...
Scheme 6: Selected transformations of the lactams trans-12b and 12o.
Scheme 7: Diastereoselectivity for the formation of α-(aminoxy)amides 9i–k.
Scheme 8: Rationalization of the diastereoselectivity for the formation of the α-(aminoxy)amide 9l.
Scheme 9: Rationalization of the thermal radical cyclization diastereoselectivity of alkoxyamines 9a–k. (S)-C...
Scheme 10: The stereochemical course for the formation of products 12m,n by thermal radical cyclization of alk...
Scheme 11: Formation of bicycles 12o,p.
Beilstein J. Org. Chem. 2014, 10, 2594–2602, doi:10.3762/bjoc.10.272
Graphical Abstract
Figure 1: Pharmacologically active derivatives 1–4 containing the 1,4-benzoxazepine moiety or its analogue.
Scheme 1: Domino Knoevenagel–[1,5]-hydride shift cyclization reaction for the preparation of condensed 1,4-be...
Scheme 2: i) a) NaN3, CF3COOH, b) H2O, Δ (77%); ii) LiAlH4, dry THF, Δ (80%); iii) 11b, K2CO3, toluene, Δ (71...
Figure 2: Lowest-energy conformers of a) trans-(2S,15aS)-7a (>99.9%) with the replacement of the N-methyl gro...
Figure 3: Lowest-energy conformers of a) cis-(2R,15aS)-7a (99.4%) with the replacement of the N-methyl groups...
Figure 4: HPLC-ECD spectra of the first-eluting (black curve) and second-eluting (red curve) enantiomers of a...
Figure 5: Protective effect of compound 7a on hydrogen peroxide-induced neurotoxicity in SH-SY5Y cells. ##P <...
Figure 6: Protective effect of compound 7b on β-amyloid25–35-induced neurotoxicity in SH-SY5Y cells. ##P < 0....
Beilstein J. Org. Chem. 2014, 10, 1272–1281, doi:10.3762/bjoc.10.128
Graphical Abstract
Figure 1: Selected examples of endoperoxide-containing natural products.
Scheme 1: Endoperoxide formation via cation radicals. In both examples, single electron oxidation is followed...
Scheme 2: Diversification strategy for endoperoxide synthesis by single electron transfer. E*red vs SCE [20].
Figure 2: ORTEP of 3a.
Scheme 3: Proposed mechanism for endoperoxide synthesis from tethered dienes.
Scheme 4: Competing formal [3,3] pathway.
Beilstein J. Org. Chem. 2014, 10, 481–513, doi:10.3762/bjoc.10.46
Graphical Abstract
Scheme 1: General reaction mechanism for Ag(I)-catalyzed A3-coupling reactions.
Scheme 2: A3-coupling reaction catalyzed by polystyrene-supported NHC–silver halides.
Figure 1: Various NHC–Ag(I) complexes used as catalysts for A3-coupling.
Scheme 3: Proposed reaction mechanism for NHC–AgCl catalyzed A3-coupling reactions.
Scheme 4: Liu’s synthesis of pyrrole-2-carboxaldehydes 4.
Scheme 5: Proposed reaction mechanism for Liu’s synthesis of pyrrole-2-carboxaldehydes 4.
Scheme 6: Gold-catalyzed synthesis of propargylamines 1.
Scheme 7: A3-coupling catalyzed by phosphinamidic Au(III) metallacycle 6.
Scheme 8: Gold-catalyzed KA2-coupling.
Scheme 9: A3-coupling applied to aldehyde-containing oligosaccharides 8.
Scheme 10: A3-MCR for the preparation of propargylamine-substituted indoles 9.
Scheme 11: A3-coupling interceded synthesis of furans 12.
Scheme 12: A3/KA2-coupling mediated synthesis of functionalized dihydropyrazoles 13 and polycyclic dihydropyra...
Scheme 13: Au(I)-catalyzed entry to cyclic carbamimidates 17 via an A3-coupling-type approach.
Scheme 14: Proposed reaction mechanism for the Au(I)-catalyzed synthesis of cyclic carbamimidates 17.
Figure 2: Chiral trans-1-diphenylphosphino-2-aminocyclohexane–Au(I) complex 20.
Scheme 15: A3-coupling-type synthesis of oxazoles 21 catalyzed by Au(III)–salen complex.
Scheme 16: Proposed reaction mechanism for the synthesis of oxazoles 21.
Scheme 17: Synthesis of propargyl ethyl ethers 24 by an A3-coupling-type reaction.
Scheme 18: General mechanism of Ag(I)-catalyzed MCRs of 2-alkynylbenzaldehydes, amines and nucleophiles.
Scheme 19: General synthetic pathway to 1,3-disubstituted-1,2-dihydroisoquinolines.
Scheme 20: Synthesis of 1,3-disubstituted-1,2-dihydroisoquinolines 29.
Scheme 21: Synthesis of 1,3-disubstituted-1,2-dihydroisoquinolines 35 and 36.
Scheme 22: Rh(II)/Ag(I) co-catalyzed synthesis of 1,3-disubstituted-1,2-dihydroisoquinolines 40.
Scheme 23: General synthetic pathway to 2-amino-1,2-dihydroquinolines.
Scheme 24: Synthesis of 2-amino-1,2-dihydroquinolines 47.
Scheme 25: Synthesis of tricyclic H-pyrazolo[5,1-a]isoquinoline 48.
Scheme 26: Synthesis of tricyclic H-pyrazolo[5,1-a]isoquinolines 48.
Scheme 27: Cu(II)/Ag(I) catalyzed synthesis of H-pyrazolo[5,1-a]isoquinolines 48.
Scheme 28: Synthesis of 2-aminopyrazolo[5,1-a]isoquinolines 53.
Scheme 29: Synthesis of 1-(isoquinolin-1-yl)guanidines 55.
Scheme 30: Ag(I)/Cu(I) catalyzed synthesis of 2-amino-H-pyrazolo[5,1-a]isoquinolines 58.
Scheme 31: Ag(I)/Ni(II) co-catalyzed synthesis of 3,4-dihydro-1H-pyridazino[6,1-a]isoquinoline-1,1-dicarboxyla...
Scheme 32: Ag(I) promoted activation of the α-carbon atom of the isocyanide group.
Scheme 33: Synthesis of dihydroimidazoles 65.
Scheme 34: Synthesis of oxazoles 68.
Scheme 35: Stereoselective synthesis of chiral butenolides 71.
Scheme 36: Proposed reaction mechanism for the synthesis of butenolides 71.
Scheme 37: Stereoselective three-component approach to pirrolidines 77 by means of a chiral auxiliary.
Scheme 38: Stereoselective three-component approach to pyrrolidines 81 and 82 by means of a chiral catalyst.
Scheme 39: Synthesis of substituted five-membered carbocyles 86.
Scheme 40: Synthesis of regioisomeric arylnaphthalene lactones.
Scheme 41: Enantioselective synthesis of spiroacetals 96 by Fañanás and Rodríguez [105].
Scheme 42: Enantioselective synthesis of spiroacetals 101 by Gong [106].
Scheme 43: Synthesis of polyfunctionalized fused bicyclic ketals 103 and bridged tricyclic ketals 104.
Scheme 44: Proposed reaction mechanism for the synthesis of ketals 103 and 104.
Scheme 45: Synthesis of β-alkoxyketones 108.
Scheme 46: Synthesis of N-methyl-1,4-dihydropyridines 112.
Scheme 47: Synthesis of tetrahydrocarbazoles 115–117.
Scheme 48: Plausible reaction mechanism for the synthesis of tetrahydrocarbazoles 115–117.
Scheme 49: Carboamination, carboalkoxylation and carbolactonization of terminal alkenes.
Scheme 50: Oxyarylation of alkenes with arylboronic acids and Selectfluor as reoxidant.
Scheme 51: Proposed reaction mechanism for oxyarylation of alkenes.
Scheme 52: Oxyarylation of alkenes with arylsilanes and Selectfluor as reoxidant.
Scheme 53: Oxyarylation of alkenes with arylsilanes and IBA as reoxidant.
Beilstein J. Org. Chem. 2013, 9, 2242–2249, doi:10.3762/bjoc.9.263
Graphical Abstract
Scheme 1: Gold(I)-catalyzed reactions of 1,6-enynes.
Scheme 2: Cyclization of o-(alkynyl)-(3-methylbut-2-enyl)benzenes 1. Previous work and proposed pathways.
Scheme 3: Synthesis of o-(alkynyl)-(3-methylbut-2-enyl)benzenes 1.
Scheme 4: Gold(I)-catalyzed cycloisomerization of 1a.
Scheme 5: Initial experiments and proof of concept.
Scheme 6: Gold(I)-catalyzed hydroxycyclization of enynes 1m,n.
Scheme 7: Gold(I)-catalyzed methoxycyclization of selected 1,6-enynes 1 [45].
Scheme 8: Labelling experiment and proposed mechanism.
Beilstein J. Org. Chem. 2013, 9, 1620–1629, doi:10.3762/bjoc.9.185
Graphical Abstract
Scheme 1: Experimental results for the radical arylation of epoxides.
Scheme 2: 5-exo cyclization of the hexenyl radical.
Scheme 3: Intramolecular radical additions of simple aniline derivatives.
Scheme 4: Successful catalytic radical addition to an N-methyl substituted aniline.
Figure 1: Optimized structure of the transition state of the radical addition of 1 (left: spin density plot a...
Scheme 5: Intramolecular radical additions of simple aniline derivatives.
Scheme 6: Mismatching of polar effects.
Scheme 7: Examples of p-substituted anilines investigated.
Scheme 8: Examples of m,m’-disubstituted anilines investigated.
Scheme 9: Addition reactions leading to dihydrobenzofuran and an indane.
Beilstein J. Org. Chem. 2013, 9, 1340–1345, doi:10.3762/bjoc.9.151
Graphical Abstract
Scheme 1: A construction of spirocyclic pyrrolidinyl oxindole by tandem radical cyclization with azide [14].
Scheme 2: A tandem radical cyclization/annulation strategy for the synthesis of 4,4-spirocyclic γ-lactams wit...
Scheme 3: The synthetic methods of 1a.
Scheme 4: The tandem radical spirocyclization reaction of N-(2-(azidomethyl)allyl)-N-(2-iodophenyl)-4-methylb...
Scheme 5: Proposed mechanism for a construction of 4,4-spirocyclic indoline γ-lactam 2f by the tandem radical...
Scheme 6: Proposed mechanism for the formation of THF-incorporating product 3 from 1g.
Beilstein J. Org. Chem. 2013, 9, 1235–1242, doi:10.3762/bjoc.9.140
Graphical Abstract
Scheme 1: The Pictet–Spengler reaction of tryptamine with 4-tolualdehyde.
Figure 1: The two Pictet–Spengler substrates employed in the TCT catalyzed cyclization.
Scheme 2: Synthesis of the Pictet–Spengler substrate 4. Reaction conditions: (a) K2CO3, DMF, 80 °C, 3 h; (b) ...
Beilstein J. Org. Chem. 2012, 8, 1901–1908, doi:10.3762/bjoc.8.220
Graphical Abstract
Figure 1: Structure of meridianins A–G.
Scheme 1: Synthesis of functionalized meridianin with an amino group at position 5.
Scheme 2: Synthesis of a functionalized meridianin with an amino group at position 5.
Scheme 3: Synthesis of substrate for the modified Pictet–Spengler reaction.
Scheme 4: The Pictet–Spengler reaction involving substrate 2a. Reagents and conditions: (i) RCHO, 2% triflic ...
Scheme 5: Synthesis of dihydropyrimido-β-carbolines: (i) R-CHO, 2% triflic acid in DMF, 120 °C, 16 h.
Scheme 6: Synthesis of substrates 18a–c for the modified Pictet–Spengler reaction.
Scheme 7: General strategy for the Pictet–Spengler reaction involving substrates 18. Reagents and conditions:...
Beilstein J. Org. Chem. 2011, 7, 897–936, doi:10.3762/bjoc.7.103
Graphical Abstract
Scheme 1: Gold-catalyzed addition of alcohols.
Scheme 2: Gold-catalyzed cycloaddition of alcohols.
Scheme 3: Ionic liquids as the solvent in gold-catalyzed cycloaddition.
Scheme 4: Gold-catalyzed cycloaddition of diynes.
Scheme 5: Gold(I) chloride catalyzed cycloisomerization of 2-alkynyl-1,5-diols.
Scheme 6: Gold-catalyzed cycloaddition of glycols and dihydroxy compounds.
Scheme 7: Gold-catalyzed ring-opening of cyclopropenes.
Scheme 8: Gold-catalyzed intermolecular hydroalkoxylation of alkynes. PR3 = 41–45.
Scheme 9: Gold-catalyzed intramolecular 6-endo-dig cyclization of β-hydroxy-α,α-difluoroynones.
Scheme 10: Gold-catalyzed intermolecular hydroalkoxylation of non-activated olefins.
Scheme 11: Preparation of unsymmetrical ethers from alcohols.
Scheme 12: Expedient synthesis of dihydrofuran-3-ones.
Scheme 13: Catalytic approach to functionalized divinyl ketones.
Scheme 14: Gold-catalyzed glycosylation.
Scheme 15: Gold-catalyzed cycloaddition of aldehydes and ketones.
Scheme 16: Gold-catalyzed annulations of 2-(ynol)aryl aldehydes and o-alkynyl benzaldehydes.
Scheme 17: Gold-catalyzed addition of carboxylates.
Scheme 18: Dual-catalyzed rearrangement reaction of allenoates.
Scheme 19: Meyer–Schuster rearrangement of propargylic alcohols.
Scheme 20: Propargylic alcohol rearrangements.
Scheme 21: Gold-catalyzed synthesis of imines and amine alkylation.
Scheme 22: Hydroamination of allenes and allenamides.
Scheme 23: Gold-catalyzed inter- and intramolecular amination of alkynes and alkenes.
Scheme 24: Gold-catalyzed cycloisomerization of O-propioloyl oximes and β-allenylhydrazones.
Scheme 25: Intra- and intermolecular amination with ureas.
Scheme 26: Gold-catalyzed cyclization of ortho-alkynyl-N-sulfonylanilines and but-3-yn-1-amines.
Scheme 27: Gold-catalyzed piperidine ring synthesis.
Scheme 28: Ring expansion of alkylnyl cyclopropanes.
Scheme 29: Gold-catalyzed annulations of N-propargyl-β-enaminones and azomethine imines.
Scheme 30: Gold(I)-catalyzed cycloisomerization of aziridines.
Scheme 31: AuCl3/AgSbF6-catalyzed intramolecular amination of 2-(tosylamino)phenylprop-1-en-3-ols.
Scheme 32: Gold-catalyzed cyclization via a 7-endo-dig pathway.
Scheme 33: Gold-catalyzed synthesis of fused xanthines.
Scheme 34: Gold-catalyzed synthesis of amides and isoquinolines.
Scheme 35: Gold-catalyzed oxidative cross-coupling reactions of propargylic acetates.
Scheme 36: Gold-catalyzed nucleophilic addition to allenamides.
Scheme 37: Gold-catalyzed direct carbon–carbon bond coupling reactions.
Scheme 38: Gold-catalyzed C−H functionalization of indole/pyrrole heterocycles and non-activated arenes.
Scheme 39: Gold-catalyzed cycloisomerization of cyclic compounds.
Scheme 40: Gold-catalyzed cycloaddition of 1-aryl-1-allen-6-enes and propargyl acetates.
Scheme 41: Gold(I)-catalyzed cycloaddition with ligand-controlled regiochemistry.
Scheme 42: Gold(I)-catalyzed cycloaddition of dienes and enynes.
Scheme 43: Gold-catalyzed intramolecular cycloaddition of 3-alkoxy-1,5-enynes and 2,2-dipropargylmalonates.
Scheme 44: Gold-catalyzed intramolecular cycloaddition of 1,5-allenynes.
Scheme 45: Gold(I)-catalyzed cycloaddition of indoles.
Scheme 46: Gold-catalyzed annulation reactions.
Scheme 47: Gold–carbenoid induced cleavage of a sp3-hybridized C−H bond.
Scheme 48: Furan- and indole-based cascade reactions.
Scheme 49: Tandem process using aromatic alkynes.
Scheme 50: Gold-catalyzed cycloaddition of 1,3-dien-5-ynes.
Scheme 51: Gold-catalyzed cascade cyclization of diynes, propargylic esters, and 1,3-enynyl ketones.
Scheme 52: Tandem reaction of β-phenoxyimino ketones and alkynyl oxime ethers.
Scheme 53: Gold-catalyzed tandem cyclization of enynes, 2-(tosylamino)phenylprop-1-yn-3-ols, and allenoates.
Scheme 54: Cyclization of 2,4-dien-6-yne carboxylic acids.
Scheme 55: Gold(I)-catalyzed tandem cyclization approach to tetracyclic indolines.
Scheme 56: Gold-catalyzed tandem reactions of alkynes.
Scheme 57: Aminoarylation and oxyarylation of alkenes.
Scheme 58: Cycloaddition of 2-ethynylnitrobenzene with various alkenes.
Scheme 59: Gold-catalyzed tandem reactions of allenoates and alkynes.
Scheme 60: Gold-catalyzed asymmetric synthesis of 2,3-dihydropyrroles.
Scheme 61: Chiral [NHC–Au(I)]-catalyzed cyclization of enyne.
Scheme 62: Gold-catalyzed hydroaminations and hydroalkoxylations.
Scheme 63: Gold(I)-catalyzed asymmetric hydroalkoxylation of 1,3-dihydroxymethyl-2-alkynylbenzene chromium com...
Scheme 64: Gold-catalyzed synthesis of julolidine derivatives.
Scheme 65: Gold-catalyzed the synthesis of chiral fused heterocycles.
Scheme 66: Gold-catalyzed asymmetric reactions with 3,5-(t-Bu)2-4-MeO-MeOBIPHEP.
Scheme 67: Gold-catalyzed cyclization of o-(alkynyl) styrenes.
Scheme 68: Asymmetric gold(I)-catalyzed redox-neutral domino reactions of enynes.
Scheme 69: Gold(I)-catalyzed enantioselective polyene cyclization reaction.
Scheme 70: Gold(I)-catalyzed enantioselective synthesis of benzopyrans.
Scheme 71: Gold(I)-catalyzed enantioselective ring expansion of allenylcyclopropanols.
Beilstein J. Org. Chem. 2011, 7, 847–859, doi:10.3762/bjoc.7.97
Graphical Abstract
Scheme 1: Mechanistic scenarios for alkyne activation.
Scheme 2: Synthesis of 3(2H)-furanones.
Scheme 3: Synthesis of furans.
Scheme 4: Formation of dihydrooxazoles.
Scheme 5: Variation on indole formation.
Scheme 6: Formation of naphthalenes.
Scheme 7: Formation of indenes.
Scheme 8: Iodocyclization of 3-silyloxy-1,5-enynes.
Scheme 9: 5-Endo cyclizations with concomitant nucleophilic trapping.
Scheme 10: Reactivity of 3-BocO-1,5-enynes.
Scheme 11: Intramolecular nucleophilic trapping.
Scheme 12: Approach to azaanthraquinones.
Scheme 13: Carbocyclizations with enol derivatives.
Scheme 14: Gold-catalyzed cyclization modes for 1,5-enynes.
Scheme 15: Iodine-induced cyclization of 1,5-enynes.
Scheme 16: Diverse reactivity of 1,6-enynes.
Scheme 17: Iodocyclization of 1,6-enynes.
Scheme 18: Cyclopropanation of alkenes with 1,6-enynes.
Scheme 19: Cyclopropanation of alkenes with 1,6-enynes.
Beilstein J. Org. Chem. 2011, 7, 767–780, doi:10.3762/bjoc.7.87
Graphical Abstract
Scheme 1: Transition metal promoted rearrangements of bicyclo[1.1.0]butanes.
Scheme 2: Gold-catalyzed rearrangements of strained rings.
Scheme 3: Gold-catalyzed ring expansions of cyclopropanols and cyclobutanols.
Scheme 4: Mechanism of the cycloisomerization of alkynyl cyclopropanols and cyclobutanols.
Scheme 5: Proposed mechanism for the Au-catalyzed isomerization of alkynyl cyclobutanols.
Scheme 6: Gold-catalyzed cycloisomerization of 1-allenylcyclopropanols.
Scheme 7: Gold-catalyzed cycloisomerization of cyclopropylmethanols.
Scheme 8: Gold-catalyzed cycloisomerization of aryl alkyl epoxides.
Scheme 9: Gold-catalyzed synthesis of furans.
Scheme 10: Transformations of alkynyl oxiranes.
Scheme 11: Transformations of alkynyl oxiranes into ketals.
Scheme 12: Gold-catalyzed cycloisomerization of cyclopropyl alkynes.
Scheme 13: Gold-catalyzed synthesis of substituted furans.
Scheme 14: Proposed mechanism for the isomerization of alkynyl cyclopropyl ketones.
Scheme 15: Cycloisomerization of cyclobutylazides.
Scheme 16: Cycloisomerization of alkynyl aziridines.
Scheme 17: Gold-catalyzed synthesis of disubstituted cyclohexadienes.
Scheme 18: Gold-catalyzed synthesis of indenes.
Scheme 19: Gold-catalyzed [n + m] annulation processes.
Scheme 20: Gold-catalyzed generation of 1,4-dipoles.
Scheme 21: Gold-catalyzed synthesis of repraesentin F.
Scheme 22: Gold-catalyzed ring expansion of cyclopropyl 1,6-enynes.
Scheme 23: Gold-catalyzed synthesis of ventricos-7(13)-ene.
Scheme 24: 1,2- vs 1,3-Carboxylate migration.
Scheme 25: Gold-catalyzed cycloisomerization of vinyl alkynyl cyclopropanes.
Scheme 26: Proposed mechanism for the cycloisomerization of vinyl alkynyl cyclopropanes.
Scheme 27: Gold-catalyzed 1,2-acyloxy rearrangement/cyclopropanation/cycloisomerization cascades.
Scheme 28: Formal total synthesis of frondosin A.
Scheme 29: Gold-catalyzed rearrangement/cycloisomerization of cyclopropyl propargyl acetates.
Beilstein J. Org. Chem. 2011, 7, 570–577, doi:10.3762/bjoc.7.66
Graphical Abstract
Figure 1: Common spiroketal motifs.
Figure 2: Spiroketal-containing cephalosporolide natural products.
Scheme 1: Cyclocondensation vs. cycloisomerization for the synthesis of spiroketals.
Scheme 2: Retrosynthetic analysis of cephalosporolide H.
Scheme 3: Key precedents for the desired cycloisomerization.
Scheme 4: Proposed cycloisomerization with acetal hydrolysis.
Scheme 5: Synthesis of model cyclization substrate 13.
Scheme 6: Synthesis of reported structure of cephalosporolide H.
Scheme 7: Proposed mechanism.
Scheme 8: Control experiment for gold-activation of the alkyne.
Beilstein J. Org. Chem. 2009, 5, No. 1, doi:10.3762/bjoc.5.1
Graphical Abstract
Scheme 1: Aza- and thia-substituted electron donors.
Scheme 2: Radical-polar crossover reaction of arenediazonium salts by TTF.
Scheme 3: Studies on the reductive radical cyclization of arenediazonium salt 16 by TDAE.
Scheme 4: Preparation of the arenediazonium salts 31a–d. Reagents and conditions: (a) 23, NaH, THF, 0 °C, 0.5...
Scheme 5: Cascade radical cyclizations of arenediazonium salts 42 and 44 by TDAE. Reagents and conditions: (a...
Scheme 6: TDAE-mediated radical based addition-elimination route to indoles.
Scheme 7: Cyclization of the arenediazonium salts 49b–d by TDAE. Reagents and conditions: (a) NOBF4, CH2Cl2, ...
Scheme 8: Cyclization of the arenediazonium salt 62 by TDAE. Reagents and conditions: (a) 2-Nitrobenzenesulfo...
Scheme 9: Mechanism for the formation of the tetracyclic sulfonamide 65.
Scheme 10: Possible mechanism for the formation of indole (63) and indole sulfonamide 64.