Search results

Search for "BINOL phosphate" in Full Text gives 5 result(s) in Beilstein Journal of Organic Chemistry.

New advances in asymmetric organocatalysis II

  • Radovan Šebesta

Beilstein J. Org. Chem. 2025, 21, 766–769, doi:10.3762/bjoc.21.60

Graphical Abstract
  • transformation was catalyzed by a calcium complex of BINOL phosphate [29]. As can be seen from the summary above, the articles in this thematic issue cover a diverse array of topics in contemporary asymmetric organocatalysis. Moreover, they also reflect the diversity of our scientific community, as researchers
PDF
Album
Editorial
Published 15 Apr 2025

Development and mechanistic studies of calcium–BINOL phosphate-catalyzed hydrocyanation of hydrazones

  • Carola Tortora,
  • Christian A. Fischer,
  • Sascha Kohlbauer,
  • Alexandru Zamfir,
  • Gerd M. Ballmann,
  • Jürgen Pahl,
  • Sjoerd Harder and
  • Svetlana B. Tsogoeva

Beilstein J. Org. Chem. 2025, 21, 755–765, doi:10.3762/bjoc.21.59

Graphical Abstract
  • hydrocyanation of hydrazones, catalyzed by a calcium–BINOL phosphate complex, has been studied for the first time both experimentally and computationally with DFT methods. A full catalytic cycle for the enantioselective synthesis of α-hydrazinonitriles is proposed based on insights gained from DFT calculations
  • enantioselectivity achieved with the calcium catalyst remains modest, mainly due to competing pathways for the Z- and E-hydrazone isomers leading to opposite enantiomers. The experimental results confirm these computational proposals. Keywords: asymmetric synthesis; calcium–BINOL phosphate catalysis; hydrocyanation
  • in elucidating the mechanism by which these bifunctional compounds act as powerful catalysts [21][22][23][24][25][26][27][28][29]. Since Ishihara disclosed the crucial role of calcium in many purportedly purely organocatalytic BINOL phosphate-catalyzed reactions [30][31], several asymmetric synthesis
PDF
Album
Supp Info
Full Research Paper
Published 14 Apr 2025

Group 13 exchange and transborylation in catalysis

  • Dominic R. Willcox and
  • Stephen P. Thomas

Beilstein J. Org. Chem. 2023, 19, 325–348, doi:10.3762/bjoc.19.28

Graphical Abstract
  • achieved. When AgOTf was replaced with silver (R)-BINOL phosphate, the asymmetric allylation proceeded in a moderate yield (60%) and enantioselectivity (40% ee). The structure of the ‘GaIOTf’ species was explored in more detail by Slattery, and a monovalent [GaI(18-crown-6)OTf] complex was isolated and
PDF
Album
Review
Published 21 Mar 2023

β-Hydroxy sulfides and their syntheses

  • Mokgethwa B. Marakalala,
  • Edwin M. Mmutlane and
  • Henok H. Kinfe

Beilstein J. Org. Chem. 2018, 14, 1668–1692, doi:10.3762/bjoc.14.143

Graphical Abstract
  • ranged from –78 °C to room temperature. The use of amines, alcohols as well as alkyl and arylthiols as nucleophiles failed to provide the corresponding products. A year later, Antilla and co-workers found lithium-binol phosphate 64 to be an efficient catalyst for the desymmetrization of meso-epoxides
  • complex. Enantioselective ring-opening reaction of stilbene oxides with ArSH catalyzed by a C2-symmetric chiral bipyridyldiol–titanium complex. Asymmetric desymmetrization of meso-epoxides using BINOL-based Brønsted acid catalysts. Lithium-BINOL-phosphate-catalyzed desymmetrization of meso-epoxides with
PDF
Album
Review
Published 05 Jul 2018

Asymmetric Brønsted acid-catalyzed aza-Diels–Alder reaction of cyclic C-acylimines with cyclopentadiene

  • Magnus Rueping and
  • Sadiya Raja

Beilstein J. Org. Chem. 2012, 8, 1819–1824, doi:10.3762/bjoc.8.208

Graphical Abstract
  • optically active aza-tetracycles in good yields with high diastereo- and enantioselectivities under mild reaction conditions. Keywords: BINOL phosphate; [4 + 2] cycloaddition; Diels–Alder reaction; organocatalysis; Introduction The enantioselective aza-Diels–Alder reaction is an important method for the
PDF
Album
Supp Info
Full Research Paper
Published 23 Oct 2012
Other Beilstein-Institut Open Science Activities