Search for "Shi epoxidation" in Full Text gives 2 result(s) in Beilstein Journal of Organic Chemistry.
Beilstein J. Org. Chem. 2013, 9, 1179–1184, doi:10.3762/bjoc.9.132
Graphical Abstract
Figure 1: Lyconadin A.
Scheme 1: Retrosynthetic analysis of 1.
Scheme 2: Synthesis of triether 15.
Scheme 3: Synthesis and attempted ring-opening of epoxide 17.
Scheme 4: Attempted protection of 14 and silyl migration.
Scheme 5: Synthesis and ring-opening rearrangement of epoxide 25.
Scheme 6: Proposed mechanism for generation of alcohol 26.
Scheme 7: Synthesis of epoxide 29 from alcohol 26 (asterisks indicate relative but not absolute stereochemist...
Beilstein J. Org. Chem. 2008, 4, No. 48, doi:10.3762/bjoc.4.48
Graphical Abstract
Scheme 1: Total synthesis of longifolicin by Marshall’s group.
Scheme 2: Total synthesis of corossoline by Tanaka’s group.
Scheme 3: Total synthesis of corossoline by Wu’s group.
Scheme 4: Total synthesis of pseudo-annonacin A by Hanessian’s group.
Scheme 5: Total synthesis of tonkinecin by Wu’s group.
Scheme 6: Total synthesis of gigantetrocin A by Shi’s group.
Scheme 7: Total synthesis of annonacin by Wu’s group.
Scheme 8: Total synthesis of solamin by Kitahara’s group.
Scheme 9: Total synthesis of solamin by Mioskowski’s group.
Scheme 10: Total synthesis of cis-solamin by Makabe’s group.
Scheme 11: Total synthesis of cis-solamin by Brown’s group.
Scheme 12: The formal synthesis of (+)-cis-solamin by Donohoe’s group.
Scheme 13: Total synthesis of cis-solamin by Stark’s group.
Scheme 14: Total synthesis of mosin B by Tanaka’s group.
Scheme 15: Total synthesis of longicin by Hanessian’s group.
Scheme 16: Total synthesis of murisolin and 16,19-cis-murisolin by Tanaka’s group.
Scheme 17: Synthesis of a stereoisomer library of (+)-murisolin by Curran’s group.
Scheme 18: Total synthesis of murisolin by Makabe’s group.
Scheme 19: Total synthesis of reticulatain-1 by Makabe’s group.
Scheme 20: Total synthesis of muricatetrocin C by Ley’s group.
Scheme 21: Total synthesis of (4R,12S,15S,16S,19R,20R,34S)-muricatetrocin (146) and (4R,12R,15S,16S,19R,20R,34S...
Scheme 22: Total synthesis of parviflorin by Hoye’s group.
Scheme 23: Total synthesis of parviflorin by Trost’s group.
Scheme 24: Total synthesis of trilobacin by Sinha’s group.
Scheme 25: Total synthesis of 15-epi-annonin I 181b by Scharf’s group.
Scheme 26: Total synthesis of squamocin A and squamocin D by Scharf’s group.
Scheme 27: Total synthesis of asiminocin by Marshall’s group.
Scheme 28: Total synthesis of asiminecin by Marshall’s group.
Scheme 29: Total synthesis of (+)-(30S)-bullanin by Marshall’s group.
Scheme 30: Total synthesis of uvaricin by the group of Sinha and Keinan.
Scheme 31: Formal synthesis of uvaricin by Burke’s group.
Scheme 32: Total synthesis of trilobin by Marshall’s group.
Scheme 33: Total synthesis of trilobin by the group of Sinha and Keinan.
Scheme 34: Total synthesis of asimilobin by the group of Wang and Shi.
Scheme 35: Total synthesis of squamotacin by the group of Sinha and Keinan.
Scheme 36: Total synthesis of asimicin by Marshall’s group.
Scheme 37: Total synthesis of asimicin by the group of Sinha and Keinan.
Scheme 38: Total synthesis of asimicin by Roush’s group.
Scheme 39: Total synthesis of asimicin by Marshall’s group.
Scheme 40: Total synthesis of 10-hydroxyasimicin by Ley’s group.
Scheme 41: Total synthesis of asimin by Marshall’s group.
Scheme 42: Total synthesis of bullatacin by the group of Sinha and Keinan.
Scheme 43: Total synthesis of bullatacin by Roush’s group.
Scheme 44: Total synthesis of bullatacin by Pagenkopf’s group.
Scheme 45: Total synthesis of rollidecins C and D by the group of Sinha and Keinan.
Scheme 46: Total synthesis of 30(S)-hydroxybullatacin by Marshall’s group.
Scheme 47: Total synthesis of uvarigrandin A and 5(R)-uvarigrandin A by Marshall’s group.
Scheme 48: Total synthesis of membranacin by Brown’s group.
Scheme 49: Total synthesis of membranacin by Lee’s group.
Scheme 50: Total synthesis of rolliniastatin 1 and rollimembrin by Lee’s group.
Scheme 51: Total synthesis of longimicin D by the group of Maezaki and Tanaka.
Scheme 52: Total synthesis of the structure proposed for mucoxin by Borhan’s group.
Scheme 53: Modular synthesis of adjacent bis-THF annonaceous acetogenins by Marshall’s group.
Scheme 54: Total synthesis of 4-deoxygigantecin by Tanaka’s group.
Scheme 55: Total synthesis of squamostatins D by Marshall’s group.
Scheme 56: Total synthesis of gigantecin by Crimmins’s group.
Scheme 57: Total synthesis of gigantecin by Hoye’s group.
Scheme 58: Total synthesis of cis-sylvaticin by Donohoe’s group.
Scheme 59: Total synthesis of 17(S),18(S)-goniocin by Sinha’s group.
Scheme 60: Total synthesis of goniocin and cyclogoniodenin T by the group of Sinha and Keinan.
Scheme 61: Total synthesis of jimenezin by Takahashi’s group.
Scheme 62: Total synthesis of jimenezin by Lee’s group.
Scheme 63: Total synthesis of jimenezin by Hoffmann’s group.
Scheme 64: Total synthesis of muconin by Jacobsen’s group.
Scheme 65: Total synthesis of (+)-muconin by Kitahara’s group.
Scheme 66: Total synthesis of muconin by Takahashi’s group.
Scheme 67: Total synthesis of muconin by the group of Yoshimitsu and Nagaoka.
Scheme 68: Total synthesis of mucocin by the group of Sinha and Keinan.
Scheme 69: Total synthesis of mucocin by Takahashi’s group.
Scheme 70: Total synthesis of (−)-mucocin by Koert’s group.
Scheme 71: Total synthesis of mucocin by the group of Takahashi and Nakata.
Scheme 72: Total synthesis of mucocin by Evans’s group.
Scheme 73: Total synthesis of mucocin by Mootoo’s group.
Scheme 74: Total synthesis of (−)-mucocin by Crimmins’s group.
Scheme 75: Total synthesis of pyranicin by the group of Takahashi and Nakata.
Scheme 76: Total synthesis of pyranicin by Rein’s group.
Scheme 77: Total synthesis of proposed pyragonicin by the group of Takahashi and Nakata.
Scheme 78: Total synthesis of pyragonicin by Rein’s group.
Scheme 79: Total synthesis of pyragonicin by Takahashi’s group.
Scheme 80: Total synthesis of squamostanal A by Figadère’s group.
Scheme 81: Total synthesis of diepomuricanin by Tanaka’s group.
Scheme 82: Total synthesis of (−)-muricatacin [(R,R)-373a] and its enantiomer (+)-muricatacin [(S,S)-373b] by ...
Scheme 83: Total synthesis of epi-muricatacin (+)-(S,R)-373c and (−)-(R,S)-373d by Scharf’s group.
Scheme 84: Total synthesis of (−)-muricatacin 373a and 5-epi-(−)-muricatacin 373d by Uang’s group.
Scheme 85: Total synthesis of four stereoisomers of muricatacin by Yoon’s group.
Scheme 86: Total synthesis of (+)-muricatacin by Figadère’s group.
Scheme 87: Total synthesis of (+)-epi-muricatacin and (−)-muricatacin by Couladouros’s group.
Scheme 88: Total synthesis of muricatacin by Trost’s group.
Scheme 89: Total synthesis of (−)-(4R,5R)-muricatacin by Heck and Mioskowski’s group.
Scheme 90: Total synthesis of muricatacin (−)-373a by the group of Carda and Marco.
Scheme 91: Total synthesis of (−)- and (+)-muricatacin by Popsavin’s group.
Scheme 92: Total synthesis of (−)-muricatacin by the group of Bernard and Piras.
Scheme 93: Total synthesis of (−)-muricatacin by the group of Yoshimitsu and Nagaoka.
Scheme 94: Total synthesis of (−)-muricatacin by Quinn’s group.
Scheme 95: Total synthesis of montecristin by Brückner’s group.
Scheme 96: Total synthesis of (−)-acaterin by the group of Franck and Figadère.
Scheme 97: Total synthesis of (−)-acaterin by Singh’s group.
Scheme 98: Total synthesis of (−)-acaterin by Kumar’s group.
Scheme 99: Total synthesis of rollicosin by Quinn’s group.
Scheme 100: Total synthesis of Rollicosin by Makabe’s group.
Scheme 101: Total synthesis of squamostolide by Makabe’s group.
Scheme 102: Total synthesis of tonkinelin by Makabe’s group.