Search results

Search for "cyclic guanidine" in Full Text gives 5 result(s) in Beilstein Journal of Organic Chemistry.

Intermediates and shunt products of massiliachelin biosynthesis in Massilia sp. NR 4-1

  • Till Steinmetz,
  • Blaise Kimbadi Lombe and
  • Markus Nett

Beilstein J. Org. Chem. 2023, 19, 909–917, doi:10.3762/bjoc.19.69

Graphical Abstract
  • ], the cyclic guanidine alkaloid massinidine [17], and the siderophore massiliachelin [18]. An antiSMASH analysis [19] of the genome of Massilia sp. NR 4-1 revealed the presence of additional biosynthetic gene clusters, including another putative metallophore gene cluster (ACZ75_RS05545–ACZ75_RS06020
PDF
Album
Supp Info
Full Research Paper
Published 23 Jun 2023

Selective formation of a zwitterion adduct and bicarbonate salt in the efficient CO2 fixation by N-benzyl cyclic guanidine under dry and wet conditions

  • Yoshiaki Yoshida,
  • Naoto Aoyagi and
  • Takeshi Endo

Beilstein J. Org. Chem. 2018, 14, 2204–2211, doi:10.3762/bjoc.14.194

Graphical Abstract
  • Yoshiaki Yoshida Naoto Aoyagi Takeshi Endo Molecular Engineering Institute, Kindai University, 11-6 Kayanomori, Iizuka, Fukuoka 820-8555, Japan 10.3762/bjoc.14.194 Abstract The efficient CO2 fixation by N-benzyl cyclic guanidine 1 was achieved by bubbling dry CO2 through CH3CN at 25 °C for 2 h
  • characterized in detail by elemental analysis, FTIR-ATR, solid-state NMR, TGA, and DFT calculation. These analytical results obviously revealed the formation of a zwitterion adduct and bicarbonate salt from N-benzyl cyclic guanidine and CO2. Especially, the zwitterion adduct of the monocyclic guanidine
  • derivative and CO2 was isolated and characterized for the first time. Keywords: bicarbonate salt; carbon dioxide adsorption; cyclic guanidine; repeatable capture and release; zwitterion adduct; Introduction Recently, various reactions with CO2 as a cheap and green carbon reagent have been developed not
PDF
Album
Supp Info
Full Research Paper
Published 23 Aug 2018

Enduracididine, a rare amino acid component of peptide antibiotics: Natural products and synthesis

  • Darcy J. Atkinson,
  • Briar J. Naysmith,
  • Daniel P. Furkert and
  • Margaret A. Brimble

Beilstein J. Org. Chem. 2016, 12, 2325–2342, doi:10.3762/bjoc.12.226

Graphical Abstract
  • promising antibiotic activity. This review highlights the presence of enduracididine in natural products, its biosynthesis together with a review of analogues of enduracididine. Reported synthetic approaches to the cyclic guanidine structure of enduracididine are discussed, illustrating the challenges
  • (1–6) are a rare structural class of amino acids that contain a unique five-membered cyclic guanidine moiety (blue, Figure 1). L-Enduracididine (1) and D-allo-enduracididine (4) were the first identified as amino acid components of potent depsipeptide antibiotics [1][2]. Free enduracididine (1) was
  • enzyme mppR is a pyruvate aldose that catalyses the dehydration/cyclisation of 20 to give cyclic guanidine 21 [52], where transamination by mppQ gives enduracididine (1). Further transformation to L-β-hydroxyenduracididine (5) is then catalysed by mppO [52][53]. Synthetic investigations Synthesis of
PDF
Album
Review
Published 07 Nov 2016

Muraymycin nucleoside-peptide antibiotics: uridine-derived natural products as lead structures for the development of novel antibacterial agents

  • Daniel Wiegmann,
  • Stefan Koppermann,
  • Marius Wirth,
  • Giuliana Niro,
  • Kristin Leyerer and
  • Christian Ducho

Beilstein J. Org. Chem. 2016, 12, 769–795, doi:10.3762/bjoc.12.77

Graphical Abstract
  • , 92c) in order to investigate the role of the cyclic guanidine functionality (Figure 10) [77]. These compounds were all active against MRSA and VRE with varying MIC values (Table 2). The most active analogues of this series were 92a and 92b (Figure 10, highlighted in orange) with MIC values between 1
PDF
Album
Review
Published 22 Apr 2016

C2-symmetric bisamidines: Chiral Brønsted bases catalysing the Diels- Alder reaction of anthrones

  • Deniz Akalay,
  • Gerd Dürner,
  • Jan W. Bats and
  • Michael W. Göbel

Beilstein J. Org. Chem. 2008, 4, No. 28, doi:10.3762/bjoc.4.28

Graphical Abstract
  • exerted by chiral Brønsted bases. Moderate to excellent stereoselectivities of products 3 have been reported using pyrrolidines 4 [1][2], cyclic guanidine 5 [3], or cinchona alkaloids 6 [4] as catalysts. Recently, we could promote this type of cycloaddition by metal-free bisoxazolines 7 in up to 70% ee
PDF
Album
Supp Info
Full Research Paper
Published 07 Aug 2008
Other Beilstein-Institut Open Science Activities