Search results

Search for "electrophile activation" in Full Text gives 2 result(s) in Beilstein Journal of Organic Chemistry.

Vinylogous functionalization of 4-alkylidene-5-aminopyrazoles with methyl trifluoropyruvates

  • Judit Hostalet-Romero,
  • Laura Carceller-Ferrer,
  • Gonzalo Blay,
  • Amparo Sanz-Marco,
  • José R. Pedro and
  • Carlos Vila

Beilstein J. Org. Chem. 2025, 21, 533–540, doi:10.3762/bjoc.21.41

Graphical Abstract
  • electrophile activation. In certain reactions, we isolated compound A, the hydrate of methyl trifluoropyruvate. We hypothesized that preventing the formation of this byproduct could improve the reaction yield by using molecular sieves (entries 17 and 18, Table 1). However, when molecular sieves were added, the
PDF
Album
Supp Info
Letter
Published 10 Mar 2025

New approaches to organocatalysis based on C–H and C–X bonding for electrophilic substrate activation

  • Pavel Nagorny and
  • Zhankui Sun

Beilstein J. Org. Chem. 2016, 12, 2834–2848, doi:10.3762/bjoc.12.283

Graphical Abstract
  • of organocatalysis. While traditional hydrogen bond donors containing N–H and O–H moieties have been effectively used for electrophile activation, activation based on other types of non-covalent interactions is less common. This mini review highlights recent progress in developing and exploring new
  • organic catalysts for electrophile activation through the formation of C–H hydrogen bonds and C–X halogen bonds. Keywords: C–H hydrogen bond; counteranion activation; electrophile activation; halogen bond donor; hydrogen bond donor; organocatalysis; Review Introduction Over the past century chemists
  • the near future. Electrophile Activation by Hydrogen Bond Donors [1][2][3][4][5][6][7][8][9][10][11][12][13][14][15][16]. Early examples of C–H hydrogen bonds and their recent use in supramolecular chemistry [18][19][32][33][34]. Design of 1,2,3-triazole-based catalysts for trityl group transfer
PDF
Album
Review
Published 23 Dec 2016
Other Beilstein-Institut Open Science Activities