Search results

Search for "metal-catalyst-free" in Full Text gives 6 result(s) in Beilstein Journal of Organic Chemistry.

Recent advances in the electrochemical synthesis of organophosphorus compounds

  • Babak Kaboudin,
  • Milad Behroozi,
  • Sepideh Sadighi and
  • Fatemeh Asgharzadeh

Beilstein J. Org. Chem. 2025, 21, 770–797, doi:10.3762/bjoc.21.61

Graphical Abstract
  • Cp₂Fe is lower than that of other substances, it is most likely oxidized first. In 2023, Ma et al. [60] reported an electrochemically oxidative/metal catalyst-free method for the synthesis of the α-hydroxyphosphine oxides through the reaction of diphenylphosphine as a phosphine source with aldehydes
PDF
Album
Review
Published 16 Apr 2025

Visible-light-promoted radical cyclisation of unactivated alkenes in benzimidazoles: synthesis of difluoromethyl- and aryldifluoromethyl-substituted polycyclic imidazoles

  • Yujun Pang,
  • Jinglan Yan,
  • Nawaf Al-Maharik,
  • Qian Zhang,
  • Zeguo Fang and
  • Dong Li

Beilstein J. Org. Chem. 2025, 21, 234–241, doi:10.3762/bjoc.21.15

Graphical Abstract
  • with CF2HCOOH or PhCF2COOH, and PIDA under additive-, base-, and metal catalyst-free conditions (Scheme 1b). Results and Discussion Initially, 1-(pent-4-en-1-yl)-1H-benzo[d]imidazole (1a), CF2HCOOH, and PIDA were chosen as the template substrates for this radical difluoromethylation and cyclization
  • tricyclic and bicyclic imidazoles under additive-, base-, and metal catalyst-free conditions utilizing difluoroacetic acid and α,α-difluorobenzeneacetic acid as the readily available fluorine sources. The significant advantages of this approach, including its environmental friendliness and cost
PDF
Album
Supp Info
Letter
Published 30 Jan 2025

Transition-metal-catalyst-free electroreductive alkene hydroarylation with aryl halides under visible-light irradiation

  • Kosuke Yamamoto,
  • Kazuhisa Arita,
  • Masami Kuriyama and
  • Osamu Onomura

Beilstein J. Org. Chem. 2024, 20, 1327–1333, doi:10.3762/bjoc.20.116

Graphical Abstract
  • high regioselectivity. Herein, we report the electroreductive hydroarylation of electron-deficient alkenes and styrene derivatives using (hetero)aryl halides under mild reaction conditions. Notably, the present hydroarylation proceeded with high efficiency under transition-metal-catalyst-free
  • by preventing overreduction [39]. While the metal-catalyst-free radical cyclization of alkene-tethered aryl halides has been well documented in the literature [40][41][42][43], the efficient intermolecular hydroarylation of alkenes still relies on the use of transition-metal catalysts, including Pd
  • [44], Ni [45], and Co [46] (Scheme 1a). The pioneering work by Savéant et al. demonstrated that electron-deficient (hetero)aromatics acted as efficient mediators for the metal-catalyst-free electroreductive hydroarylation of alkenes with some activated chloro-, bromo-, and iodoarenes, but the use of a
PDF
Album
Supp Info
Letter
Published 10 Jun 2024

Carbonylative synthesis and functionalization of indoles

  • Alex De Salvo,
  • Raffaella Mancuso and
  • Xiao-Feng Wu

Beilstein J. Org. Chem. 2024, 20, 973–1000, doi:10.3762/bjoc.20.87

Graphical Abstract
  • . Synthesis of N-methylindole-3-carboxylates from N-methylindoles and phenols through metal-catalyst-free reaction (top) and its hypothesized mechanism (bottom). Synthesis of indol-3-α-ketoamides (top) and indol-3-amides (bottom) via direct double- and monoaminocarbonylation of indole derivatives with
PDF
Album
Review
Published 30 Apr 2024

Metal catalyst-free N-allylation/alkylation of imidazole and benzimidazole with Morita–Baylis–Hillman (MBH) alcohols and acetates

  • Olfa Mhasni,
  • Jalloul Bouajila and
  • Farhat Rezgui

Beilstein J. Org. Chem. 2023, 19, 1251–1258, doi:10.3762/bjoc.19.93

Graphical Abstract
PDF
Album
Supp Info
Full Research Paper
Published 01 Sep 2023

Effect of the ortho-hydroxy group of salicylaldehyde in the A3 coupling reaction: A metal-catalyst-free synthesis of propargylamine

  • Sujit Ghosh,
  • Kinkar Biswas,
  • Suchandra Bhattacharya,
  • Pranab Ghosh and
  • Basudeb Basu

Beilstein J. Org. Chem. 2017, 13, 552–557, doi:10.3762/bjoc.13.53

Graphical Abstract
  • acetylene, established as a general protocol, and is believed to be of interest for synthetic chemists from green chemistry. Keywords: A3 coupling; metal-catalyst-free; propargylamine; salicylaldehyde; terminal alkyne; Introduction Propargylamines are important synthetic intermediates for the preparation
  • was made by varying the other two components viz. the secondary cyclic amine and the terminal alkyne. The results are not only encouraging but constitute a hitherto unknown general protocol for the preparation of propargylamines under metal-catalyst-free A3 coupling of salicylaldehyde as the aldehyde
  • only metal-catalyst-free approach from acetylene carboxylic acids that are difficultly accessible and with low atom economy. Thus the present reaction from easily available A3 components leading to the formation of propargylamine under metal-catalyst-free and solvent-free conditions could attract the
PDF
Album
Supp Info
Full Research Paper
Published 16 Mar 2017
Other Beilstein-Institut Open Science Activities