qPlus magnetic force microscopy in frequency-modulation mode with millihertz resolution

Maximilian Schneiderbauer, Daniel Wastl and Franz J. Giessibl
Beilstein J. Nanotechnol. 2012, 3, 174–178. https://doi.org/10.3762/bjnano.3.18

Cite the Following Article

qPlus magnetic force microscopy in frequency-modulation mode with millihertz resolution
Maximilian Schneiderbauer, Daniel Wastl and Franz J. Giessibl
Beilstein J. Nanotechnol. 2012, 3, 174–178. https://doi.org/10.3762/bjnano.3.18

How to Cite

Schneiderbauer, M.; Wastl, D.; Giessibl, F. J. Beilstein J. Nanotechnol. 2012, 3, 174–178. doi:10.3762/bjnano.3.18

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Verhage, M.; Çiftçi, H. T.; Reul, M.; Cromwijk, T.; van Stralen, T. J. N.; Koopmans, B.; Kurnosikov, O.; Flipse, K. Switchable-magnetization planar probe MFM sensor for imaging magnetic textures of complex metal oxide perovskite. Journal of Applied Physics 2024, 136. doi:10.1063/5.0234117
  • Zhang, Z.; Wen, H. F.; Li, L.; Zhang, Z.; Guo, H.; Li, Z.; Ma, Z.; Li, X.; Tang, J.; Liu, J. Imaging the distribution of a surface plasmon induced electromagnetic field at the nanoscale with MFSM. Japanese Journal of Applied Physics 2024, 63, 106001. doi:10.35848/1347-4065/ad82c4
  • Winkler, R.; Ciria, M.; Ahmad, M.; Plank, H.; Marcuello, C. A Review of the Current State of Magnetic Force Microscopy to Unravel the Magnetic Properties of Nanomaterials Applied in Biological Systems and Future Directions for Quantum Technologies. Nanomaterials (Basel, Switzerland) 2023, 13, 2585. doi:10.3390/nano13182585
  • Vokoun, D.; Samal, S.; Stachiv, I. Magnetic Force Microscopy in Physics and Biomedical Applications. Magnetochemistry 2022, 8, 42. doi:10.3390/magnetochemistry8040042
  • Labardi, M.; Capaccioli, S. Tuning-fork-based piezoresponse force microscopy. Nanotechnology 2021, 32, 445701. doi:10.1088/1361-6528/ac1634
  • Kebei, C.; Liu, Z.; Yuchen, X.; Chunyu, Z.; Gengzhao, X.; Wentao, S.; Xu, K. Numerical analysis of vibration modes of a qPlus sensor with a long tip. Beilstein journal of nanotechnology 2021, 12, 82–92. doi:10.3762/bjnano.12.7
  • Pudalov, V. M. Measurements of the magnetic properties of conduction electrons. Physics-Uspekhi 2021, 64, 3–27. doi:10.3367/ufne.2020.05.038771
  • Pudalov, V. M. Measurements of the magnetic properties of conduction electrons. Uspekhi Fizicheskih Nauk 2020, 191, 3–29. doi:10.3367/ufnr.2020.05.038771
  • Giessibl, F. J. The qPlus sensor, a powerful core for the atomic force microscope. The Review of scientific instruments 2019, 90, 011101. doi:10.1063/1.5052264
  • Wastl, D. S. Ambient atomic resolution atomic force microscopy with qPlus sensors: Part 1. Microscopy research and technique 2016, 80, 50–65. doi:10.1002/jemt.22730
  • Sotthewes, K.; Siekman, M. H.; Zandvliet, H. J. A method to measure the thermovoltage with a high spatial resolution. Applied Physics Letters 2016, 108, 141601. doi:10.1063/1.4945665
  • Ishida, N.; Jo, M.; Mano, T.; Sakuma, Y.; Noda, T.; Fujita, D. Direct visualization of the N impurity state in dilute GaNAs using scanning tunneling microscopy. Nanoscale 2015, 7, 16773–16780. doi:10.1039/c5nr04193g
  • Wurster, E.-C.; Liebl, R.; Michaelis, S.; Robelek, R.; Wastl, D. S.; Giessibl, F. J.; Goepferich, A.; Breunig, M. Oligolayer-coated nanoparticles: impact of surface topography at the nanobio interface. ACS applied materials & interfaces 2015, 7, 7891–7900. doi:10.1021/am508435j
  • Wastl, D. S.; Judmann, M.; Weymouth, A. J.; Giessibl, F. J. Atomic Resolution of Calcium and Oxygen Sublattices of Calcite in Ambient Conditions by Atomic Force Microscopy Using qPlus Sensors with Sapphire Tips. ACS nano 2015, 9, 3858–3865. doi:10.1021/acsnano.5b01549
  • Hou, Y.; Lu, Q. The coefficient of the voltage induced frequency shift measurement on a quartz tuning fork. Sensors (Basel, Switzerland) 2014, 14, 21941–21949. doi:10.3390/s141121941
  • Wastl, D. S.; Weymouth, A. J.; Giessibl, F. J. Atomically Resolved Graphitic Surfaces in Air by Atomic Force Microscopy. ACS nano 2014, 8, 5233–5239. doi:10.1021/nn501696q
  • Pielmeier, F.; Meuer, D.; Schmid, D. R.; Strunk, C.; Giessibl, F. J. Impact of thermal frequency drift on highest precision force microscopy using quartz-based force sensors at low temperatures. Beilstein journal of nanotechnology 2014, 5, 407–412. doi:10.3762/bjnano.5.48
  • Shaterzadeh-Yazdi, Z.; Livadaru, L.; Taucer, M.; Mutus, J.; Pitters, J. L.; Wolkow, R. A.; Sanders, B. C. Characterizing the rate and coherence of single-electron tunneling between two dangling bonds on the surface of silicon. Physical Review B 2014, 89, 035315. doi:10.1103/physrevb.89.035315
  • Wastl, D. S.; Weymouth, A. J.; Giessibl, F. J. Optimizing atomic resolution of force microscopy in ambient conditions. Physical Review B 2013, 87, 245415. doi:10.1103/physrevb.87.245415
  • Welker, J.; Illek, E.; Giessibl, F. J. Analysis of force-deconvolution methods in frequency-modulation atomic force microscopy. Beilstein journal of nanotechnology 2012, 3, 238–248. doi:10.3762/bjnano.3.27
Other Beilstein-Institut Open Science Activities