Junction formation of Cu3BiS3 investigated by Kelvin probe force microscopy and surface photovoltage measurements

Fredy Mesa, William Chamorro, William Vallejo, Robert Baier, Thomas Dittrich, Alexander Grimm, Martha C. Lux-Steiner and Sascha Sadewasser
Beilstein J. Nanotechnol. 2012, 3, 277–284. https://doi.org/10.3762/bjnano.3.31

Cite the Following Article

Junction formation of Cu3BiS3 investigated by Kelvin probe force microscopy and surface photovoltage measurements
Fredy Mesa, William Chamorro, William Vallejo, Robert Baier, Thomas Dittrich, Alexander Grimm, Martha C. Lux-Steiner and Sascha Sadewasser
Beilstein J. Nanotechnol. 2012, 3, 277–284. https://doi.org/10.3762/bjnano.3.31

How to Cite

Mesa, F.; Chamorro, W.; Vallejo, W.; Baier, R.; Dittrich, T.; Grimm, A.; Lux-Steiner, M. C.; Sadewasser, S. Beilstein J. Nanotechnol. 2012, 3, 277–284. doi:10.3762/bjnano.3.31

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Rath, T.; Marin-Beloqui, J. M.; Bai, X.; Knall, A.-C.; Sigl, M.; Warchomicka, F. G.; Griesser, T.; Amenitsch, H.; Haque, S. A. Solution-Processable Cu3BiS3 Thin Films: Growth Process Insights and Increased Charge Generation Properties by Interface Modification. ACS applied materials & interfaces 2023, 15, 41624–41633. doi:10.1021/acsami.3c10297
  • Guillén, C. Effect of polycrystalline structure on the behavior of evaporated β-In2S3 thin films. Vacuum 2022, 205, 111446. doi:10.1016/j.vacuum.2022.111446
  • Zahid, S.; Tariq, Z.; Azhar, A.; Khan, S. U.; Ali, U.; Basit, M. A. Electroanalytical investigation of quantum-dot based deposition of metal chalcogenides on g-C3N4 for improved photochemical performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022, 645, 128905. doi:10.1016/j.colsurfa.2022.128905
  • Daskalakis, I. I.; Vamvasakis, I.; Papadas, I. T.; Tsatsos, S.; Choulis, S. A.; Kennou, S.; Armatas, G. S. Surface defect engineering of mesoporous Cu/ZnS nanocrystal-linked networks for improved visible-light photocatalytic hydrogen production. Inorganic Chemistry Frontiers 2020, 7, 4687–4700. doi:10.1039/d0qi01013h
  • Tiwari, J. N.; Singh, A. N.; Sultan, S.; Kim, K. S. Recent Advancement of p- and d-Block Elements, Single Atoms, and Graphene-Based Photoelectrochemical Electrodes for Water Splitting. Advanced Energy Materials 2020, 10, 2000280. doi:10.1002/aenm.202000280
  • Whittles, T. J.; Veal, T. D.; Savory, C. N.; Yates, P. J.; Murgatroyd, P. A. E.; Gibbon, J. T.; Birkett, M.; Potter, R. J.; Major, J. D.; Durose, K.; Scanlon, D. O.; Dhanak, V. R. Band Alignments, Band Gap, Core Levels, and Valence Band States in Cu3BiS3 for Photovoltaics. ACS applied materials & interfaces 2019, 11, 27033–27047. doi:10.1021/acsami.9b04268
  • Peccerillo, E.; Durose, K. Copper—antimony and copper—bismuth chalcogenides—Research opportunities and review for solar photovoltaics. MRS Energy & Sustainability 2018, 5, 1–59. doi:10.1557/mre.2018.10
  • Whittles, T. J. The Electronic Structure of Cu3BiS3 for Use as a PV Absorber. Springer Theses; Springer International Publishing, 2018; pp 139–173. doi:10.1007/978-3-319-91665-1_4
  • Whittles, T. J. The Electronic Structure of CuSbS2 for Use as a PV Absorber. Springer Theses; Springer International Publishing, 2018; pp 99–138. doi:10.1007/978-3-319-91665-1_3
  • Shearer, M. J.; Li, M.-Y.; Li, L.-J.; Jin, S.; Hamers, R. J. Nanoscale Surface Photovoltage Mapping of 2D Materials and Heterostructures by Illuminated Kelvin Probe Force Microscopy. The Journal of Physical Chemistry C 2018, 122, 13564–13571. doi:10.1021/acs.jpcc.7b12579
  • Whittles, T. J.
  • Deshmukh, S. G.; Kheraj, V. A comprehensive review on synthesis and characterizations of Cu3BiS3 thin films for solar photovoltaics. Nanotechnology for Environmental Engineering 2017, 2, 1–12. doi:10.1007/s41204-017-0025-8
  • Kamimura, S.; Beppu, N.; Sasaki, Y.; Tsubota, T.; Ohno, T. Platinum and indium sulfide-modified Cu3BiS3 photocathode for photoelectrochemical hydrogen evolution. Journal of Materials Chemistry A 2017, 5, 10450–10456. doi:10.1039/c7ta02740k
  • Zhang, L.; Jin, X.; Yuan, C.; Jiang, G.; Liu, W.; Zhu, C. The effect of the sulfur concentration on the phase transformation from the mixed CuO-Bi 2 O 3 system to Cu 3 BiS 3 during the sulfurization process. Applied Surface Science 2016, 389, 858–864. doi:10.1016/j.apsusc.2016.08.003
  • Mesa, F.; Fajardo, D. Study of heterostructures of Cu3BiS3–buffer layer measured by Kelvin probe force microscopy measurements (KPFM)1. Canadian Journal of Physics 2014, 92, 892–895. doi:10.1139/cjp-2013-0592
  • Murali, B.; Madhuri, M.; Krupanidhi, S. B. Near-infrared photoactive Cu3BiS3 thin films by co-evaporation. Journal of Applied Physics 2014, 115, 173109. doi:10.1063/1.4875495
  • Athauda, T. J.; Madduma-Bandarage, U. S. K.; Vasquez, Y. Integration of ZnO/ZnS nanostructured materials into a cotton fabric platform. RSC Adv. 2014, 4, 61327–61332. doi:10.1039/c4ra12074d
  • Mesa, F.; Ballesteros, V.; Dussan, A.
  • Juma, A. Ph.D. Thesis, . doi:10.17169/refubium-9829
Other Beilstein-Institut Open Science Activities