Cite the Following Article
Plasmonics-based detection of H2 and CO: discrimination between reducing gases facilitated by material control
Gnanaprakash Dharmalingam, Nicholas A. Joy, Benjamin Grisafe and Michael A. Carpenter
Beilstein J. Nanotechnol. 2012, 3, 712–721.
https://doi.org/10.3762/bjnano.3.81
How to Cite
Dharmalingam, G.; Joy, N. A.; Grisafe, B.; Carpenter, M. A. Beilstein J. Nanotechnol. 2012, 3, 712–721. doi:10.3762/bjnano.3.81
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- L, K.; Dharmalingam, G. In-situ scrutiny of the transition melting of pristine (Au) and metal oxide (Au-gallia)-supported plasmonic nanostructures. Journal of Physics and Chemistry of Solids 2024, 185, 111800. doi:10.1016/j.jpcs.2023.111800
- Kumar, M. Metal oxide nanocomposites for surface plasmon resonance based gas sensing. Complex and Composite Metal Oxides for Gas VOC and Humidity Sensors Volume 1; Elsevier, 2024; pp 255–271. doi:10.1016/b978-0-323-95385-6.00003-9
- Keerthana, L.; Indhu, A. R.; Dharmalingam, G. High-temperature stable plasmonic gold gallia nanocomposites for gas sensing. Journal of Materials Research 2022, 38, 497–506. doi:10.1557/s43578-022-00834-5
- Keerthana, L.; Indhu, A. R.; Dharmalingam, G. An approach towards the synthesis of faceted Ga2O3 nano- and micro-structures through the microwave process. Applied Nanoscience 2022, 12, 2857–2871. doi:10.1007/s13204-022-02572-w
- Dharanya, C.; Dharmalingam, G. Oxygen vacancies in nanostructured hetero-interfacial oxides: a review. Journal of Nanoparticle Research 2022, 24. doi:10.1007/s11051-022-05440-4
- Keerthana, L.; Dar, M. A.; Dharmalingam, G. Plasmonic Au-Metal Oxide Nanocomposites for High-Temperature and Harsh Environment Sensing Applications. Chemistry, an Asian journal 2021, 16, 3558–3584. doi:10.1002/asia.202100885
- Demirdjian, B.; Ozerov, I.; Bedu, F.; Ranguis, A.; Henry, C. CO and O2 Adsorption and CO Oxidation on Pt Nanoparticles by Indirect Nanoplasmonic Sensing. ACS omega 2021, 6, 13398–13405. doi:10.1021/acsomega.1c01487
- Nazem, S.; Malekmohammad, M.; Soltanolkotabi, M. Theoretical and experimental study of a surface plasmon sensor based on Ag-MgF 2 grating coupler. Applied Physics B 2020, 126, 1–11. doi:10.1007/s00340-020-07449-w
- Dharmalingam, G.; Sivasubramaniam, R.; Parthiban, S. Quantification of Ethanol by Metal-Oxide-Based Resistive Sensors: A Review. Journal of Electronic Materials 2020, 49, 3009–3024. doi:10.1007/s11664-020-08039-4
- Banu, L.; Potyrailo, R. A.; Carpenter, M. A. Kinetics Analysis of Multichannel Hydrogen Reactions on Plasmonic-Based Au–GdC Thin-Film Nanocomposites. The Journal of Physical Chemistry C 2019, 123, 17925–17932. doi:10.1021/acs.jpcc.8b12267
- Jee, Y.; Wuenschell, J.; Abernathy, H.; Lee, S.; Kalapos, T.; Hackett, G. A.; Ohodnicki, P. R. High-temperature oxygen sensing behavior of perovskite films on the optical fiber platform. In Oxide-based Materials and Devices X, SPIE, 2019; pp 233–241. doi:10.1117/12.2508648
- Jee, Y.; Yu, Y.; Abernathy, H.; Lee, S.; Kalapos, T.; Hackett, G. A.; Ohodnicki, P. R. Plasmonic Conducting Metal Oxide-Based Optical Fiber Sensors for Chemical and Intermediate Temperature-Sensing Applications. ACS applied materials & interfaces 2018, 10, 42552–42563. doi:10.1021/acsami.8b11956
- Banu, L.; Potyrailo, R. A.; Carpenter, M. A. Investigation of plasmonic based nanocomposite thin films for high temperature gas sensing. In 2018 IEEE Nanotechnology Symposium (ANTS), IEEE, 2018; pp 1–6. doi:10.1109/nanotech.2018.8653563
- Viespe, C.; Miu, D. Characteristics of Surface Acoustic Wave Sensors with Nanoparticles Embedded in Polymer Sensitive Layers for VOC Detection. Sensors (Basel, Switzerland) 2018, 18, 2401. doi:10.3390/s18072401
- Proença, M. M. C.; Borges, J. N. P.; Rodrigues, M.; Domingues, R. P.; Dias, J. P.; Trigueiro, J.; Bundaleski, N.; Teodoro, O. M. N. D.; Vaz, F. Development of Au/CuO nanoplasmonic thin films for sensing applications. Surface and Coatings Technology 2018, 343, 178–185. doi:10.1016/j.surfcoat.2017.08.033
- Dorozinska, H.; Turu, T. A.; Markina, O. M.; Dorozinsky, G.; Maslov, V. Influence of Temperature on the Measuring Accuracy of Devices Based on Surface Plasmon Resonance Phenomenon. Modern Instrumentation 2018, 7, 1–10. doi:10.4236/mi.2018.71001
- Dorozinsky, G. State-of-the art and problems in developing sеnsor elements of devices basеd on surface plasmon resonance phenomenon (Review). Optoèlektronika i poluprovodnikovaâ tehnika 2017, 52, 37–49. doi:10.15407/jopt.2017.52.037
- Karker, N.; Carpenter, M. A. High figure of merit hydrogen sensor using multipolar plasmon resonance modes. Sensors and Actuators B: Chemical 2017, 252, 385–390. doi:10.1016/j.snb.2017.05.158
- Karker, N.; Dharmalingam, G.; Carpenter, M. A. HARSH ENVIRONMENT COMPATIBLE PLASMONICS BASED CHEMICAL SENSORS. Advanced Photonics 2017 (IPR, NOMA, Sensors, Networks, SPPCom, PS) 2017, SeTu3D.5. doi:10.1364/sensors.2017.setu3d.5
- Collins, S. S. E.; Cittadini, M.; Pecharromán, C.; Martucci, A.; Mulvaney, P. Hydrogen Spillover between Single Gold Nanorods and Metal Oxide Supports: A Surface Plasmon Spectroscopy Study. ACS nano 2015, 9, 7846–7856. doi:10.1021/acsnano.5b02970