Influence of diffusion on space-charge-limited current measurements in organic semiconductors

Thomas Kirchartz
Beilstein J. Nanotechnol. 2013, 4, 180–188. https://doi.org/10.3762/bjnano.4.18

Supporting Information

Figure S1 shows the similarity between current–voltage curves affected by (i) a nonzero built-in voltage and (ii) space charge due to charged defects. The effect of built-in voltage on forward- and reverse-bias current–voltage curves is shown in Figure S2. Figure S3 discusses the effect of series resistances of fitting current–voltage curves with the Murgatroyd equation. Figures S4 to Figure S6 are the fits used to create Figure 5.

Supporting Information File 1: Additional simulations.
Format: PDF Size: 796.4 KB Download

Cite the Following Article

Influence of diffusion on space-charge-limited current measurements in organic semiconductors
Thomas Kirchartz
Beilstein J. Nanotechnol. 2013, 4, 180–188. https://doi.org/10.3762/bjnano.4.18

How to Cite

Kirchartz, T. Beilstein J. Nanotechnol. 2013, 4, 180–188. doi:10.3762/bjnano.4.18

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Le Corre, V. M. Space-Charge-Limited Current Measurements: A Problematic Technique for Metal Halide Perovskites. The journal of physical chemistry letters 2024, 15, 10001–10008. doi:10.1021/acs.jpclett.4c02379
  • Yeşil, T.; Mutlu, A.; Başak Turgut, S.; Gültekin, B.; Zafer, C. Utilizing a Carbazole‐Incorporated Regioisomeric Synthesis Strategy to Design Hole Transporting Materials for Perovskite Solar Cells. ChemPhotoChem 2024, 8. doi:10.1002/cptc.202400040
  • Wan, Z.; Jiang, S.; Lu, H.; Zhu, J.; Wang, Y.; Zeng, H.; Yin, H.; Wei, R.; Luo, J.; Jia, C. Replacing Li+ in Li-TFSI with a benzene ring: constructing non-ionic p-dopants for stable and efficient perovskite solar cells. Journal of Materials Chemistry C 2024, 12, 8078–8086. doi:10.1039/d4tc00595c
  • Nguyen, T. doi:10.1002/9781394229451.refs
  • Ghorab, M.; Fattah, A.; Joodaki, M. Fundamentals of organic solar cells: A review on mobility issues and measurement methods. Optik 2022, 267, 169730. doi:10.1016/j.ijleo.2022.169730
  • Siekmann, J.; Ravishankar, S.; Kirchartz, T. Apparent Defect Densities in Halide Perovskite Thin Films and Single Crystals. ACS Energy Letters 2021, 6, 3244–3251. doi:10.1021/acsenergylett.1c01449
  • Zeiske, S.; Sandberg, O. J.; Zarrabi, N.; Li, W.; Meredith, P.; Armin, A. Direct observation of trap-assisted recombination in organic photovoltaic devices. Nature communications 2021, 12, 3603. doi:10.1038/s41467-021-23870-x
  • Liu, Z.-F.; Siekmann, J.; Klingebiel, B.; Rau, U.; Kirchartz, T. Interface Optimization via Fullerene Blends Enables Open-Circuit Voltages of 1.35 V in CH3NH3Pb(I0.8Br0.2)3 Solar Cells. Advanced Energy Materials 2021, 11, 2003386. doi:10.1002/aenm.202003386
  • Le Corre, V. M.; Duijnstee, E. A.; Tambouli, O. E.; Ball, J. M.; Snaith, H. J.; Lim, J.; Koster, L. J. A. Revealing Charge Carrier Mobility and Defect Densities in Metal Halide Perovskites via Space-Charge-Limited Current Measurements. ACS energy letters 2021, 6, 1087–1094. doi:10.1021/acsenergylett.0c02599
  • Rodríguez-Seco, C.; Cabau, L.; Privado, M.; de la Cruz, P.; Langa, F.; Sharma, G. D.; Palomares, E. Panchromatic Triple Organic Semiconductor Heterojunctions for Efficient Solar Cells. ACS Applied Energy Materials 2020, 3, 12506–12516. doi:10.1021/acsaem.0c02469
  • Hartnagel, P.; Kirchartz, T. Understanding the Light-Intensity Dependence of the Short-Circuit Current of Organic Solar Cells. Advanced Theory and Simulations 2020, 3, 2000116. doi:10.1002/adts.202000116
  • Rodríguez-Seco, C.; Méndez, M.; Roldán-Carmona, C.; Cabau, L.; Asiri, A. M.; Nazeeruddin, M. K.; Palomares, E. Benzothiadiazole Aryl-amine Based Materials as Efficient Hole Carriers in Perovskite Solar Cells. ACS applied materials & interfaces 2020, 12, 32712–32718. doi:10.1021/acsami.0c07586
  • Silva, L. A.; Luzardo, J. M.; Oliveira, S. M.; Curti, R. V.; Silva, A. M.; Valaski, R.; Capaz, R. B.; Araujo, J. R. Graphene as interface modifier in ITO and ITO-Cr electrodes. Current Applied Physics 2020, 20, 846–852. doi:10.1016/j.cap.2020.04.004
  • Dahlström, S.; Ahläng, C.; Björkström, K.; Forsblom, S.; Granroth, B.; Jansson, K.; Luukkonen, A.; Masood, M. T.; Poulizac, J.; Qudsia, S.; Nyman, M. Extraction current transients for mobility determination—A comparative study. AIP Advances 2020, 10, 065203. doi:10.1063/5.0008802
  • Fru, J. N.; Nombona, N.; Diale, M. Synthesis and characterisation of methylammonium lead tri-bromide perovskites thin films by sequential physical vapor deposition. Physica B: Condensed Matter 2020, 578, 411884. doi:10.1016/j.physb.2019.411884
  • Röhr, J. A. Direct Determination of Built-in Voltages in Asymmetric Single-Carrier Devices. Physical Review Applied 2019, 11, 054079. doi:10.1103/physrevapplied.11.054079
  • Gamboa, R. A. M.; Jaramillo-Quintero, O. A.; Altamirano, Y. A. A.; Concha-Guzmán, M. O.; Rincón, M. E. A novel nanocomposite based on NiOx-incorporated P3HT as hole transport material for Sb2S3 solar cells with enhanced device performance. Journal of colloid and interface science 2018, 535, 400–407. doi:10.1016/j.jcis.2018.10.015
  • Werner, D.; Apaydin, D. H.; Portenkirchner, E. An Anthraquinone/Carbon Fiber Composite as Cathode Material for Rechargeable Sodium-Ion Batteries. Batteries & Supercaps 2018, 1, 160–168. doi:10.1002/batt.201800057
  • Röhr, J. A.; Shi, X.; Haque, S. A.; Kirchartz, T.; Nelson, J. Charge Transport in Spiro-OMeTAD Investigated through Space-Charge-Limited Current Measurements. Physical Review Applied 2018, 9, 044017. doi:10.1103/physrevapplied.9.044017
  • Holliday, S. A Simple Linear Acceptor with Dye-Based Flanking Groups. Springer Theses; Springer International Publishing, 2018; pp 35–62. doi:10.1007/978-3-319-77091-8_3
Other Beilstein-Institut Open Science Activities