Cite the Following Article
Thermal treatment of magnetite nanoparticles
Beata Kalska-Szostko, Urszula Wykowska, Dariusz Satula and Per Nordblad
Beilstein J. Nanotechnol. 2015, 6, 1385–1396.
https://doi.org/10.3762/bjnano.6.143
How to Cite
Kalska-Szostko, B.; Wykowska, U.; Satula, D.; Nordblad, P. Beilstein J. Nanotechnol. 2015, 6, 1385–1396. doi:10.3762/bjnano.6.143
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Nitu; Fopase, R.; Pandey, L. M.; Borah, J. P.; Srinivasan, A. Enhancement of induction heating capability of bioactive SiO2–CaO–Na2O–P2O5 glass-ceramics by selective substitution with magnetite nanoparticles. Biomedical Materials 2024, 19, 45038–045038. doi:10.1088/1748-605x/ad51c0
- Nitu; Fopase, R.; Pandey, L. M.; Hazarika, K. P.; Borah, J. P.; Singh, R. K.; Srinivasan, A. Enhancement in the induction heating efficacy of sol-gel derived SiO2-CaO-Na2O-P2O5 bioglass-ceramics by incorporating magnetite nanoparticles. Journal of materials chemistry. B 2024, 12, 3494–3508. doi:10.1039/d3tb03014h
- Kristl, M.; Ostroško, U.; Ban, I.; Petrinić, I.; Stergar, J. Thermal study of APTES-functionalized magnetite nanoparticles with citric acid and polyacrylic acid for advanced forward osmosis systems. Journal of Thermal Analysis and Calorimetry 2024. doi:10.1007/s10973-024-12983-2
- Velinov, N.; Petrova, T.; Karashanova, D.; Atanasova, G.; Kovacheva, D. Nanocrystalline (Cu0.5Ni0.5)yFe3−yO4 Ferrites: Synthesis and Characterization. Crystals 2024, 14, 233. doi:10.3390/cryst14030233
- Topal, K. Boron Oxide Mediated Magnetite Synthesis, Characterization and Sensor Application. Elsevier BV 2024. doi:10.2139/ssrn.4855287
- Klekotka, U.; Boratyńska, S.; Satuła, D.; Kalska-Szostko, B. Influence of long-term thermal treatment of magnetite nanoparticles on its physicochemical properties. Journal of Magnetism and Magnetic Materials 2023, 585, 171099. doi:10.1016/j.jmmm.2023.171099
- Klekotka, U.; Satuła, D.; Wasilewska, A.; Kalska-Szostko, B. Effect of dopant on the thermal stability of core-shell ferrite nanoparticles. Advanced Powder Technology 2023, 34, 104192. doi:10.1016/j.apt.2023.104192
- El-Shater, R. E.; El Shimy, H.; Saafan, S. A.; Darwish, M. A.; Zhou, D.; Naidu, K. C. B.; Khandaker, M. U.; Mahmoud, Z.; Trukhanov, A. V.; Trukhanov, S. V.; Fakhry, F. Fabrication of doped ferrites and exploration of their structure and magnetic behavior. Materials Advances 2023, 4, 2794–2810. doi:10.1039/d3ma00105a
- Samy, M.; Mensah, K.; El-Fakharany, E. M.; Elkady, M.; Shokry, H. Green valorization of end-of-life toner powder to iron oxide-nanographene nanohybrid as a recyclable persulfate activator for degrading emerging micropollutants. Environmental research 2023, 223, 115460. doi:10.1016/j.envres.2023.115460
- Bielicka, M.; Klekotka, U.; Nowakowska, O.; Satuła, D.; Kalska-Szostko, B. Role of the synthesis procedure on the physicochemical properties of doped magnetite. Advanced Powder Technology 2023, 34, 103925. doi:10.1016/j.apt.2022.103925
- El-Shater, R. E.; El Shimy, H.; Saafan, S. A.; Darwish, M. A.; Zhou, D.; Trukhanov, A. V.; Trukhanov, S. V.; Fakhry, F. Synthesis, characterization, and magnetic properties of Mn nanoferrites. Journal of Alloys and Compounds 2022, 928, 166954. doi:10.1016/j.jallcom.2022.166954
- Mayer, J. M.; Abraham, J. A.; Surhigh, B.; Kinzer, B.; Bala Chandran, R. Temperature-dependent diffuse reflectance measurements of ceramic powders in the near- and mid-infrared spectra. Solar Energy 2022, 245, 193–210. doi:10.1016/j.solener.2022.08.071
- Kuciakowski, J.; Stȩpień, J.; Żukrowski, J.; Lachowicz, D.; Żywczak, A.; Gajewska, M.; Przybylski, M.; Pollastri, S.; Olivi, L.; Sikora, M.; Kmita, A. Thermal Decomposition Pathways of ZnxFe3–xO4 Nanoparticles in Different Atmospheres. Industrial & Engineering Chemistry Research 2022, 61, 12532–12544. doi:10.1021/acs.iecr.2c01572
- Shukla, A.; Singh, S. C.; Bhardwaj, A.; Kotnala, R. K.; Uttam, K. N.; Guo, C.; Gopal, R. Calcination Temperature Induced Structural, Optical and Magnetic Transformations in Titanium Ferrite Nanoparticles. Reactions 2022, 3, 224–232. doi:10.3390/reactions3010017
- Nope, E.; Sathicq, Á. G.; Martínez, J. J.; Rojas, H.; Macías, M. A.; Castillo, J.; Romanelli, G. Solvent‐Free Microwave‐Assisted Multicomponent Synthesis of 4H‐Chromenes Using Fe3O4‐Based Hydrotalcites as Bifunctional Catalysts. ChemistrySelect 2022, 7. doi:10.1002/slct.202104360
- Akhtar, K.; Javed, K.; Ali Shah, S. S. Synthesis routes for multi-shape Fe3O4 nanoparticles through oxidation-precipitation of hematite and modified co-precipitation method without surfactant. Journal of Dispersion Science and Technology 2022, 44, 1759–1769. doi:10.1080/01932691.2022.2042308
- Dwi Ana Santosa, E.; Tamyiz, M.; Sagadevan, S.; Hidayat, A.; Fatimah, I.; Doong, R.-a. Stable and magnetically separable nanocomposite prepared from bauxite mining tailing waste as catalyst in wet peroxidation of tetracycline. Results in Chemistry 2022, 4, 100451. doi:10.1016/j.rechem.2022.100451
- Zakhireh, S.; Omidi, Y.; Beygi-Khosrowshahi, Y.; Aghanejad, A.; Barar, J.; Adibkia, K. Biocompatibility Evaluation of Hollow Pollen Grains/Fe3 O4 Nanoparticles Composites as Potential Medical Devices. International Journal of Nanoscience 2021, 20. doi:10.1142/s0219581x21500484
- Căpraru, A.; Moacă, E.-A.; Păcurariu, C.; Ianoş, R.; Lazău, R.; Barbu-Tudoran, L. Development and characterization of magnetic iron oxide nanoparticles using microwave for the combustion reaction ignition, as possible candidates for biomedical applications. Powder Technology 2021, 394, 1026–1038. doi:10.1016/j.powtec.2021.08.093
- Ullah, S.; Ali, S.; Abid, A. B.; Nafees, M. Modulating response of Zea mays to induced salinity stress through application of nitrate mediated silver nanoparticles and indole acetic acid. Microscopy research and technique 2021, 85, 1135–1145. doi:10.1002/jemt.23982
Patents
- DAVID LUSSEY. Electrically Anisotropic Material. GB 2585400 B, Sept 13, 2023.
- LUSSEY DAVID. Method of controlling electrical properties of magnetite particles. CN 113226991 A, Aug 6, 2021.
- DAVID LUSSEY. New composition of matter. GB 2585400 A, Jan 13, 2021.
- LUSSEY DAVID. METHOD OF CONTROLLING THE ELECTRICAL PROPERTIES OF MAGNETITE PARTICLES. WO 2020136373 A3, July 30, 2020.