Using natural language processing techniques to inform research on nanotechnology

Nastassja A. Lewinski and Bridget T. McInnes
Beilstein J. Nanotechnol. 2015, 6, 1439–1449. https://doi.org/10.3762/bjnano.6.149

Cite the Following Article

Using natural language processing techniques to inform research on nanotechnology
Nastassja A. Lewinski and Bridget T. McInnes
Beilstein J. Nanotechnol. 2015, 6, 1439–1449. https://doi.org/10.3762/bjnano.6.149

How to Cite

Lewinski, N. A.; McInnes, B. T. Beilstein J. Nanotechnol. 2015, 6, 1439–1449. doi:10.3762/bjnano.6.149

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Khan, M. S.; Alshahrani, M. Y.; Wahab, S.; Gupta, G.; Kesharwani, P. Evolution of artificial intelligence as a modern technology in advanced cancer therapy. Journal of Drug Delivery Science and Technology 2024, 98, 105892. doi:10.1016/j.jddst.2024.105892
  • Ananikov, V. P. Top 20 influential AI-based technologies in chemistry. Artificial Intelligence Chemistry 2024, 2, 100075. doi:10.1016/j.aichem.2024.100075
  • Liu, Z. The Effect of Online Comment Language Style on Consumers45 willingness to pay: The Evidence from NLP and Experiment. In Proceedings of the 2024 3rd International Conference on Cyber Security, Artificial Intelligence and Digital Economy, ACM, 2024; pp 511–515. doi:10.1145/3672919.3673010
  • van Rijn, J. P. M.; Martens, M.; Ammar, A.; Cimpan, M. R.; Fessard, V.; Hoet, P.; Jeliazkova, N.; Murugadoss, S.; Vinković Vrček, I.; Willighagen, E. L. From papers to RDF-based integration of physicochemical data and adverse outcome pathways for nanomaterials. Journal of cheminformatics 2024, 16, 49. doi:10.1186/s13321-024-00833-0
  • Gomes Souza, F.; Bhansali, S.; Pal, K.; Silveira Maranhão, F. d.; Santos Oliveira, M.; Valladão, V. S.; Brandão E Silva, D. S.; Silva, G. B. A 30-Year Review on Nanocomposites: Comprehensive Bibliometric Insights into Microstructural, Electrical, and Mechanical Properties Assisted by Artificial Intelligence. Materials (Basel, Switzerland) 2024, 17, 1088. doi:10.3390/ma17051088
  • Naderian, S.; Rahmani, R.; Samad-Soltani, T. A Natural Language Processing Framework for Detecting Adverse Drug Reactions in Clinical Structured Drug Reviews. International Journal of Drug Research in Clinics 2024, 2, e9. doi:10.34172/ijdrc.2024.e9
  • Balasamy, S.; Sekaran, S.; Eswaramoorthy, R. Supporting Nanotechnology Safety Through Nanoinformatics. Green Nanoremediation; Springer International Publishing, 2023; pp 313–332. doi:10.1007/978-3-031-30558-0_14
  • Greenberg, Z. F.; Graim, K. S.; He, M. Towards artificial intelligence-enabled extracellular vesicle precision drug delivery. Advanced drug delivery reviews 2023, 199, 114974. doi:10.1016/j.addr.2023.114974
  • Scott-Fordsmand, J. J.; Amorim, M. J. B. Using Machine Learning to make nanomaterials sustainable. The Science of the total environment 2022, 859, 160303. doi:10.1016/j.scitotenv.2022.160303
  • Serov, N.; Vinogradov, V. Artificial intelligence to bring nanomedicine to life. Advanced drug delivery reviews 2022, 184, 114194. doi:10.1016/j.addr.2022.114194
  • Weber, J. M.; Guo, Z.; Zhang, C.; Schweidtmann, A. M.; Lapkin, A. A. Chemical data intelligence for sustainable chemistry. Chemical Society reviews 2021, 50, 12013–12036. doi:10.1039/d1cs00477h
  • Milanez, D. H.; de Faria, L. I. L.; Leiva, D. R. A text mining-based approach for the evaluation of patenting trends on nanomaterials. Journal of Nanoparticle Research 2021, 23, 1–12. doi:10.1007/s11051-021-05304-3
  • Lavanya, B.; Sasipriya, G. Study on Emerging Machine Learning Trends on Nanoparticles—Nanoinformatics. Advances in Intelligent Systems and Computing; Springer Singapore, 2021; pp 443–458. doi:10.1007/978-981-16-2594-7_37
  • Dasari, Y.; Kalluri, H. K.; Dondeti, V. A Crypto Scheme Using Data Obfuscation of Entity Detection and Replacement for Private Cloud. International Journal of Safety and Security Engineering 2020, 10, 417–422. doi:10.18280/ijsse.100315
  • Afantitis, A.; Melagraki, G.; Isigonis, P.; Tsoumanis, A.; Varsou, D.-D.; Valsami-Jones, E.; Papadiamantis, A. G.; Ellis, L. J. A.; Sarimveis, H.; Doganis, P.; Karatzas, P.; Tsiros, P.; Liampa, I.; Lobaskin, V.; Greco, D.; Serra, A.; Kinaret, P. A. S.; Saarimäki, L. A.; Grafström, R. C.; Kohonen, P.; Nymark, P.; Willighagen, E.; Puzyn, T.; Rybińska-Fryca, A.; Lyubartsev, A. P.; Jensen, K. A.; Brandenburg, J. G.; Lofts, S.; Svendsen, C.; Harrison, S.; Maier, D.; Tämm, K.; Jänes, J.; Sikk, L.; Dusinska, M.; Longhin, E.; Rundén-Pran, E.; Mariussen, E.; Yamani, N. E.; Unger, W.; Radnik, J.; Tropsha, A.; Cohen, Y.; Leszczynski, J.; Hendren, C. O.; Wiesner, M. R.; Winkler, D. A.; Suzuki, N.; Yoon, T. H.; Choi, J.-S.; Sanabria, N.; Gulumian, M.; Lynch, I. NanoSolveIT Project: Driving nanoinformatics research to develop innovative and integrated tools for in silico nanosafety assessment. Computational and structural biotechnology journal 2020, 18, 583–602. doi:10.1016/j.csbj.2020.02.023
  • Richarz, A.-N. CHAPTER 1 Big Data in Predictive Toxicology: Challenges, Opportunities and Perspectives. Big Data in Predictive Toxicology; The Royal Society of Chemistry, 2019; pp 1–37. doi:10.1039/9781782623656-00001
  • Sason, H.; Shamay, Y. Nanoinformatics in Drug Delivery. Israel Journal of Chemistry 2019, 60, 1108–1117. doi:10.1002/ijch.201900042
  • Casola, G.; Siegmund, C.; Mattern, M.; Sugiyama, H. Data mining algorithm for pre-processing biopharmaceutical drug product manufacturing records. Computers & Chemical Engineering 2019, 124, 253–269. doi:10.1016/j.compchemeng.2018.12.001
  • Li, Y.-P.; Han, K.; Grambow, C. A.; Green, W. H. Self-Evolving Machine: A Continuously Improving Model for Molecular Thermochemistry. The journal of physical chemistry. A 2019, 123, 2142–2152. doi:10.1021/acs.jpca.8b10789
  • Basei, G.; Hristozov, D.; Lamon, L.; Zabeo, A.; Jeliazkova, N.; Tsiliki, G.; Marcomini, A.; Torsello, A. Making use of available and emerging data to predict the hazards of engineered nanomaterials by means of in silico tools: A critical review. NanoImpact 2019, 13, 76–99. doi:10.1016/j.impact.2019.01.003
Other Beilstein-Institut Open Science Activities