Supporting Information
Supporting Information File 1:
Supporting Tables.
This document includes all of the tables not present in the text of the document that referenced throughout the document. |
||
Format: PDF | Size: 88.4 KB | Download |
Supporting Information File 2:
Raw Data.
This is the dataset containing all of the raw data used for all of the analyses in this study. |
||
Format: XLSX | Size: 31.1 KB | Download |
Supporting Information File 3: SMILES description of all the dendrimers studied here. | ||
Format: SMILES | Size: 7.8 KB | Download |
Cite the Following Article
Predicting cytotoxicity of PAMAM dendrimers using molecular descriptors
David E. Jones, Hamidreza Ghandehari and Julio C. Facelli
Beilstein J. Nanotechnol. 2015, 6, 1886–1896.
https://doi.org/10.3762/bjnano.6.192
How to Cite
Jones, D. E.; Ghandehari, H.; Facelli, J. C. Beilstein J. Nanotechnol. 2015, 6, 1886–1896. doi:10.3762/bjnano.6.192
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Heydari, S.; Masoumi, N.; Esmaeeli, E.; Ayyoubzadeh, S. M.; Ghorbani-Bidkorpeh, F.; Ahmadi, M. Artificial intelligence in nanotechnology for treatment of diseases. Journal of drug targeting 2024, 32, 1247–1266. doi:10.1080/1061186x.2024.2393417
- Tupally, K. R.; Seal, P.; Pandey, P.; Lohman, R.; Smith, S.; Ouyang, D.; Parekh, H. doi:10.1002/9781119987260.ch10
- Paul, S.; Verma, S.; Chen, Y.-C. Peptide Dendrimer-Based Antibacterial Agents: Synthesis and Applications. ACS infectious diseases 2024, 10, 1034–1055. doi:10.1021/acsinfecdis.3c00624
- Stuart, S.; Watchorn, J.; Gu, F. X. An interpretable machine learning framework for modelling macromolecular interaction mechanisms with nuclear magnetic resonance. Digital Discovery 2023, 2, 1697–1709. doi:10.1039/d3dd00009e
- Furxhi, I.; Kalapus, M.; Costa, A.; Puzyn, T. Artificial augmented dataset for the enhancement of nano-QSARs models. A methodology based on topological projections. Nanotoxicology 2023, 17, 529–544. doi:10.1080/17435390.2023.2268163
- Furxhi, I.; Willighagen, E.; Evelo, C.; Costa, A.; Gardini, D.; Ammar, A. A data reusability assessment in the nanosafety domain based on the NSDRA framework followed by an exploratory quantitative structure activity relationships (QSAR) modeling targeting cellular viability. NanoImpact 2023, 31, 100475. doi:10.1016/j.impact.2023.100475
- Yan, X.; Yue, T.; Winkler, D. A.; Yin, Y.; Zhu, H.; Jiang, G.; Yan, B. Converting Nanotoxicity Data to Information Using Artificial Intelligence and Simulation. Chemical reviews 2023, 123, 8575–8637. doi:10.1021/acs.chemrev.3c00070
- Shirokii, N.; Din, Y.; Petrov, I.; Seregin, Y.; Sirotenko, S.; Razlivina, J.; Serov, N.; Vinogradov, V. Quantitative Prediction of Inorganic Nanomaterial Cellular Toxicity via Machine Learning. Small (Weinheim an der Bergstrasse, Germany) 2023, 19, e2207106. doi:10.1002/smll.202207106
- Mujkic, A.; Baralic, E.; Ombasic, A.; Becirovic, L. S.; Pokvic, L. G.; Badnjevic, A. Machine Intelligence in Biomedical Data Modeling, Processing, and Analysis. In 2022 11th Mediterranean Conference on Embedded Computing (MECO), IEEE, 2022; pp 1–10. doi:10.1109/meco55406.2022.9797164
- Davids, J.; Ashrafian, H. AIM in Nanomedicine. Artificial Intelligence in Medicine; Springer International Publishing, 2022; pp 1169–1185. doi:10.1007/978-3-030-64573-1_240
- Furxhi, I. Health and environmental safety of nanomaterials: O Data, Where Art Thou?. NanoImpact 2021, 25, 100378. doi:10.1016/j.impact.2021.100378
- Davids, J.; Ashrafian, H. Artificial Intelligence in Medicine - AIM in Nanomedicine. Artificial Intelligence in Medicine; Springer International Publishing, 2021; pp 1–17. doi:10.1007/978-3-030-58080-3_240-1
- Boulogeorgos, A.-A. A.; Trevlakis, S. E.; Tegos, S. A.; Papanikolaou, V. K.; Karagiannidis, G. K. Machine Learning in Nano-Scale Biomedical Engineering. IEEE Transactions on Molecular, Biological and Multi-Scale Communications 2021, 7, 10–39. doi:10.1109/tmbmc.2020.3035383
- Singh, A.; Rosenkranz, D.; Ansari, M. H. D.; Singh, R.; Kanase, A.; Singh, S. P.; Johnston, B.; Tentschert, J.; Laux, P.; Luch, A. Artificial Intelligence and Machine Learning Empower Advanced Biomedical Material Design to Toxicity Prediction. Advanced Intelligent Systems 2020, 2, 2000084. doi:10.1002/aisy.202000084
- Boulogeorgos, A.-A. A.; Trevlakis, S. E.; Tegos, S. A.; Papanikolaou, V. K.; Karagiannidis, G. K. Machine Learning in Nano-Scale Biomedical Engineering. 2020.
- Furxhi, I.; Murphy, F.; Mullins, M.; Arvanitis, A.; Poland, C. A. Nanotoxicology data for in silico tools: a literature review. Nanotoxicology 2020, 14, 612–637. doi:10.1080/17435390.2020.1729439
- Furxhi, I.; Murphy, F.; Mullins, M.; Arvanitis, A.; Poland, C. A. Practices and Trends of Machine Learning Application in Nanotoxicology. Nanomaterials (Basel, Switzerland) 2020, 10, 116. doi:10.3390/nano10010116
- Sason, H.; Shamay, Y. Nanoinformatics in Drug Delivery. Israel Journal of Chemistry 2019, 60, 1108–1117. doi:10.1002/ijch.201900042
- Basei, G.; Hristozov, D.; Lamon, L.; Zabeo, A.; Jeliazkova, N.; Tsiliki, G.; Marcomini, A.; Torsello, A. Making use of available and emerging data to predict the hazards of engineered nanomaterials by means of in silico tools: A critical review. NanoImpact 2019, 13, 76–99. doi:10.1016/j.impact.2019.01.003
- Sampogna-Mireles, D.; Araya-Durán, I.; Márquez-Miranda, V.; Valencia-Gallegos, J. A.; González-Nilo, F. D. Structural analysis of binding functionality of folic acid-PEG dendrimers against folate receptor. Journal of molecular graphics & modelling 2017, 72, 201–208. doi:10.1016/j.jmgm.2017.01.004