Free vibration of functionally graded carbon-nanotube-reinforced composite plates with cutout

Mostafa Mirzaei and Yaser Kiani
Beilstein J. Nanotechnol. 2016, 7, 511–523. https://doi.org/10.3762/bjnano.7.45

Cite the Following Article

Free vibration of functionally graded carbon-nanotube-reinforced composite plates with cutout
Mostafa Mirzaei and Yaser Kiani
Beilstein J. Nanotechnol. 2016, 7, 511–523. https://doi.org/10.3762/bjnano.7.45

How to Cite

Mirzaei, M.; Kiani, Y. Beilstein J. Nanotechnol. 2016, 7, 511–523. doi:10.3762/bjnano.7.45

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 937.6 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Yang, Y.; Xu, D.; Chu, J.; Li, R. Analytic analysis of free vibration problem of the plate with a rectangular cutout using symplectic superposition method combined with domain decomposition technique. Engineering Analysis with Boundary Elements 2024, 167, 105890. doi:10.1016/j.enganabound.2024.105890
  • Zhang, D.; Wang, Y.; Pan, G.; Hozuri, A. Nonlinear free vibration modeling of anisogrid lattice sandwich plates based on a weak formulation analysis. Communications in Nonlinear Science and Numerical Simulation 2023, 123, 107277. doi:10.1016/j.cnsns.2023.107277
  • Tao, Y.; Chen, C.; Kiani, Y. Frequency analysis of smart sandwich cylindrical panels with nanocomposite core and piezoelectric face sheets. Acta Mechanica 2023, 234, 3219–3240. doi:10.1007/s00707-023-03557-8
  • Tran, Z. L. T.; Truong, T. T.; Nguyen-Thoi, T. Optimization Design of Laminated Functionally Carbon Nanotube-Reinforced Composite Plates Using Deep Neural Networks and Differential Evolution. International Journal of Computational Methods 2023, 20. doi:10.1142/s0219876222500657
  • Fan, Y.; Shen, H.-S.; Xiang, Y. Nonlinear vibration characteristics of pre- and post-buckled FG-GRMMC laminated plates with in-plane auxeticity. Engineering Structures 2023, 274, 115068. doi:10.1016/j.engstruct.2022.115068
  • Ly, D.-K.; Truong, T. T.; Nguyen, S.-N.; Nguyen-Thoi, T. A smoothed finite element formulation using zig-zag theory for hybrid damping vibration control of laminated functionally graded carbon nanotube reinforced composite plates. Engineering Analysis with Boundary Elements 2022, 144, 456–474. doi:10.1016/j.enganabound.2022.08.038
  • Soni, S. K.; Thomas, B.; Swain, A.; Roy, T. Functionally graded carbon nanotubes reinforced composite structures: An extensive review. Composite Structures 2022, 299, 116075. doi:10.1016/j.compstruct.2022.116075
  • Topal, U.; Goodarzimehr, V.; Bardhan, A.; Vo-Duy, T.; Shojaee, S. Maximization of the fundamental frequency of the FG-CNTRC quadrilateral plates using a new hybrid PSOG algorithm. Composite Structures 2022, 295, 115823. doi:10.1016/j.compstruct.2022.115823
  • Cho, J. Nonlinear bending analysis of FG-CNTRC plate resting on elastic foundation by natural element method. Engineering Analysis with Boundary Elements 2022, 141, 65–74. doi:10.1016/j.enganabound.2022.05.008
  • Kumar, V.; Dewangan, H. C.; Sharma, N.; Panda, S. K. Numerical prediction of static and vibration responses of damaged (crack and delamination) laminated shell structure: An experimental verification. Mechanical Systems and Signal Processing 2022, 170, 108883. doi:10.1016/j.ymssp.2022.108883
  • Javani, M.; Kiani, Y.; Eslami, M. R. Application of generalized differential quadrature element method to free vibration of FG-GPLRC T-shaped plates. Engineering Structures 2021, 242, 112510. doi:10.1016/j.engstruct.2021.112510
  • Kim, K.; Kwak, S.; Ri, Y.; Paek, Y.; Han, W.; Ri, K. Dynamic Analysis of Multi-Stepped Functionally Graded Carbon Nanotube Reinforced Composite Plate with General Boundary Condition. Shock and Vibration 2021, 2021. doi:10.1155/2021/5579439
  • Davar, A.; Azarafza, R.; Fayez, M. S.; Fallahi, S.; Jam, J. E. Dynamic Response of a Grid-Stiffened Composite Cylindrical Shell Reinforced with Carbon Nanotubes to a Radial Impulse Load. Mechanics of Composite Materials 2021, 57, 181–204. doi:10.1007/s11029-021-09944-3
  • Vinyas, M.; Harursampath, D.; Kattimani, S. On vibration analysis of functionally graded carbon nanotube reinforced magneto-electro-elastic plates with different electro-magnetic conditions using higher order finite element methods. Defence Technology 2021, 17, 287–303. doi:10.1016/j.dt.2020.03.012
  • Civalek, Ö.; Avcar, M. Free vibration and buckling analyses of CNT reinforced laminated non-rectangular plates by discrete singular convolution method. Engineering With Computers 2020, 1–33.
  • Civalek, Ö.; Avcar, M. Free vibration and buckling analyses of CNT reinforced laminated non-rectangular plates by discrete singular convolution method. Engineering with Computers 2020, 38, 489–521. doi:10.1007/s00366-020-01168-8
  • Ramteke, P. M.; Mehar, K.; Sharma, N.; Panda, S. K. Numerical Prediction of Deflection and Stress Responses of Functionally Graded Structure for Grading Patterns (Power-Law, Sigmoid, and Exponential) and Variable Porosity (Even/Uneven). Scientia Iranica 2020, 28, 811–829.
  • Ansari, R.; Hassani, R.; Torabi, J. Mixed-type formulation of higher-order shear deformation theory for vibration and buckling analysis of FG-GPLRC plates using VDQFEM. Composite Structures 2020, 235, 111738. doi:10.1016/j.compstruct.2019.111738
  • Van Do, V. N.; Jeon, J.-T.; Lee, C.-H. Dynamic analysis of carbon nanotube reinforced composite plates by using Bézier extraction based isogeometric finite element combined with higher-order shear deformation theory. Mechanics of Materials 2020, 142, 103307. doi:10.1016/j.mechmat.2019.103307
  • Mirzaei, M. Vibrations of FG-CNT reinforced composite cylindrical panels with cutout. Mechanics Based Design of Structures and Machines 2020, 1–21.
Other Beilstein-Institut Open Science Activities