Understanding interferometry for micro-cantilever displacement detection

Alexander von Schmidsfeld, Tobias Nörenberg, Matthias Temmen and Michael Reichling
Beilstein J. Nanotechnol. 2016, 7, 841–851. https://doi.org/10.3762/bjnano.7.76

Supporting Information

Supporting Information File 1: Profile of interferometric patterns in all planes.
Format: MP4 Size: 27.4 MB Download

Cite the Following Article

Understanding interferometry for micro-cantilever displacement detection
Alexander von Schmidsfeld, Tobias Nörenberg, Matthias Temmen and Michael Reichling
Beilstein J. Nanotechnol. 2016, 7, 841–851. https://doi.org/10.3762/bjnano.7.76

How to Cite

von Schmidsfeld, A.; Nörenberg, T.; Temmen, M.; Reichling, M. Beilstein J. Nanotechnol. 2016, 7, 841–851. doi:10.3762/bjnano.7.76

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 1.2 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Khachatryan, K.; Anter, S.; Reichling, M.; von Schmidsfeld, A. Signal generation in dynamic interferometric displacement detection. Beilstein journal of nanotechnology 2024, 15, 1070–1076. doi:10.3762/bjnano.15.87
  • Xia, F.; Rangelow, I. W.; Youcef-Toumi, K. Cantilever Mechanics and Deflection Sensing. Active Probe Atomic Force Microscopy; Springer International Publishing, 2024; pp 55–83. doi:10.1007/978-3-031-44233-9_3
  • Tetard, L. ACS In Focus; American Chemical Society, 2023. doi:10.1021/acsinfocus.7e7008
  • Muñoz-Galán, H.; Alemán, C.; Pérez-Madrigal, M. M. Beyond biology: alternative uses of cantilever-based technologies. Lab on a chip 2023, 23, 1128–1150. doi:10.1039/d2lc00873d
  • Xia, F.; Mayborne, M. P.; Ma, Q.; Youcef-Toumi, K. Physical Intelligence in the Metaverse: Mixed Reality Scale Models for Twistronics and Atomic Force Microscopy. In 2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), IEEE, 2022; pp 1722–1729. doi:10.1109/aim52237.2022.9863383
  • Alunda, B. O.; Lee, Y. J. Review: Cantilever-Based Sensors for High Speed Atomic Force Microscopy. Sensors (Basel, Switzerland) 2020, 20, 4784. doi:10.3390/s20174784
  • Basu, A. K.; Basu, A.; Bhattacharya, S. Micro/Nano fabricated cantilever based biosensor platform: A review and recent progress. Enzyme and microbial technology 2020, 139, 109558. doi:10.1016/j.enzmictec.2020.109558
  • Yang, W.; Liu, X.; Lu, W.; Zili, L.; Hu, C.; Chen, C. Traceable atomic force microscope based on monochromatic light interference. Precision Engineering 2020, 61, 48–54. doi:10.1016/j.precisioneng.2019.10.001
  • Zawierta, M.; Jeffery, R.; Putrino, G.; Silva, K. K. M. B. D.; Keating, A.; Martyniuk, M.; Faraone, L. Atomic force microscopy with integrated on-chip interferometric readout. Ultramicroscopy 2019, 205, 75–83. doi:10.1016/j.ultramic.2019.05.011
  • Wang, P.; Michael, A.; Kwok, C. Y. Silicon waveguide cantilever displacement sensor for potential application for on-chip high speed AFM. Frontiers of Optoelectronics 2018, 11, 53–59. doi:10.1007/s12200-018-0774-4
  • Andreeva, N. V. Atomic force microscopy with interferometric method for detection of the cantilever displacement and its application for low-temperature studies. Ferroelectrics 2018, 525, 178–186. doi:10.1080/00150193.2018.1432833
  • Yang, W.; Yang, X.; Lu, W.; Nengguo, Y.; Chen, L.; Zhou, L.; Chang, S. A Novel White Light Interference Based AFM Head. Journal of Lightwave Technology 2017, 35, 3604–3610. doi:10.1109/jlt.2016.2614542
Other Beilstein-Institut Open Science Activities