Cite the Following Article
Sub-nanosecond light-pulse generation with waveguide-coupled carbon nanotube transducers
Felix Pyatkov, Svetlana Khasminskaya, Vadim Kovalyuk, Frank Hennrich, Manfred M. Kappes, Gregory N. Goltsman, Wolfram H. P. Pernice and Ralph Krupke
Beilstein J. Nanotechnol. 2017, 8, 38–44.
https://doi.org/10.3762/bjnano.8.5
How to Cite
Pyatkov, F.; Khasminskaya, S.; Kovalyuk, V.; Hennrich, F.; Kappes, M. M.; Goltsman, G. N.; Pernice, W. H. P.; Krupke, R. Beilstein J. Nanotechnol. 2017, 8, 38–44. doi:10.3762/bjnano.8.5
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 710.6 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Negm, N.; Zayouna, S.; Parhizkar, S.; Lin, P.-S.; Huang, P.-H.; Suckow, S.; Schroeder, S.; De Luca, E.; Briano, F. O.; Quellmalz, A.; Duesberg, G. S.; Niklaus, F.; Gylfason, K. B.; Lemme, M. C. Graphene Thermal Infrared Emitters Integrated into Silicon Photonic Waveguides. ACS photonics 2024, 11, 2961–2969. doi:10.1021/acsphotonics.3c01892
- Konobeeva, N. N.; Trofimov, R. R.; Belonenko, M. B. Using a Hydrodynamic Approach to Model the Dynamics of a Laser Beam in an Array of Carbon Nanotubes. Bulletin of the Russian Academy of Sciences: Physics 2023, 87, 1841–1844. doi:10.1134/s1062873823704245
- Konobeeva, N. N.; Trofimov, R. R.; Belonenko, M. B. Simulation of the dynamics of laser beams in an array of carbon nanotubes using the hydrodynamic approach. Известия Российской академии наук. Серия физическая 2023, 87, 1763–1766. doi:10.31857/s0367676523703040
- Kumar, S.; Dehm, S.; Wieland, L.; Chandresh, A.; Heinke, L.; Flavel, B. S.; Krupke, R. Sensitive Detection of a Gaseous Analyte with Low‐Power Metal–Organic Framework Functionalized Carbon Nanotube Transistors. Advanced Electronic Materials 2023, 10. doi:10.1002/aelm.202300533
- Negm, N.; Zayouna, S.; Parhizkar, S.; Lin, P.-S.; Huang, P.-H.; Suckow, S.; Schroder, S.; De Luca, E.; Briano, F. O.; Quellmalz, A.; Niklaus, F.; Gylfason, K. B.; Lemme, M. C. Graphene waveguide-integrated thermal infrared emitter. In 2022 Device Research Conference (DRC), IEEE, 2022; pp 1–2. doi:10.1109/drc55272.2022.9855779
- Corletto, A.; Shapter, J. G. Nanoscale Patterning of Carbon Nanotubes: Techniques, Applications, and Future. Advanced science (Weinheim, Baden-Wurttemberg, Germany) 2020, 8, 2001778. doi:10.1002/advs.202001778
- Takahashi, H.; Suzuki, Y.; Yoshida, N.; Nakagawa, K.; Maki, H. High-speed electroluminescence from semiconducting carbon nanotube films. Journal of Applied Physics 2020, 127, 164301. doi:10.1063/5.0002092
- Gu, Q.; Chen, J. Carbon-nanotube-based nano-emitters: A review. Journal of Luminescence 2018, 200, 181–188. doi:10.1016/j.jlumin.2018.04.022