Know your full potential: Quantitative Kelvin probe force microscopy on nanoscale electrical devices

Amelie Axt, Ilka M. Hermes, Victor W. Bergmann, Niklas Tausendpfund and Stefan A. L. Weber
Beilstein J. Nanotechnol. 2018, 9, 1809–1819. https://doi.org/10.3762/bjnano.9.172

Supporting Information

Supporting Information File 1: Additional figures.
Format: PDF Size: 1.7 MB Download

Cite the Following Article

Know your full potential: Quantitative Kelvin probe force microscopy on nanoscale electrical devices
Amelie Axt, Ilka M. Hermes, Victor W. Bergmann, Niklas Tausendpfund and Stefan A. L. Weber
Beilstein J. Nanotechnol. 2018, 9, 1809–1819. https://doi.org/10.3762/bjnano.9.172

How to Cite

Axt, A.; Hermes, I. M.; Bergmann, V. W.; Tausendpfund, N.; Weber, S. A. L. Beilstein J. Nanotechnol. 2018, 9, 1809–1819. doi:10.3762/bjnano.9.172

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 539.8 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Wang, F.; Cheng, S.; Wang, X.; Song, C.; Li, J.; Jin, H.; Huang, B. Spatial‐Temporal Scanning Kelvin Probe Microscopy for Evaluating Ionic Velocity in Solid‐State Electrolytes. Small Methods 2025. doi:10.1002/smtd.202401135
  • Inami, E.; Koga, S.; Hou, L.; Li, F.; Katsube, D.; Abe, M. Atomic-scale insights into electronic structure of lattice-work structures on rutile TiO2(001) surface. Applied Surface Science Advances 2025, 27, 100777. doi:10.1016/j.apsadv.2025.100777
  • Bidinakis, K.; Weber, S. A. L. The impact of tris(pentafluorophenyl)borane hole transport layer doping on interfacial charge extraction and recombination. Beilstein journal of nanotechnology 2025, 16, 678–689. doi:10.3762/bjnano.16.52
  • Rohrbeck, P. N.; Cavar, L. D.; Weber, F.; Reichel, P. G.; Niebling, M.; Weber, S. A. L. Nanoscale capacitance spectroscopy based on multifrequency electrostatic force microscopy. Beilstein journal of nanotechnology 2025, 16, 637–651. doi:10.3762/bjnano.16.49
  • Chiodini, S.; Venturi, G.; Kerfoot, J.; Zhang, J.; Alexeev, E. M.; Taniguchi, T.; Watanabe, K.; Ferrari, A. C.; Ambrosio, A. Electromechanical Response of Saddle Points in Twisted hBN Moiré Superlattices. ACS nano 2025, 19, 16297–16306. doi:10.1021/acsnano.4c12315
  • Trofimov, S.; Lips, K.; Naydenov, B. Voltage detected single spin dynamics in diamond at ambient conditions. Nature communications 2025, 16, 3518. doi:10.1038/s41467-025-58635-3
  • Farooq, M. U.; Gharabeiki, S.; Yong, D.; Machado, J. F.; Audinot, J.-N.; Wirtz, T.; Nazeeruddin, M. K.; Sienbentritt, S.; Redinger, A. Impact of processing atmosphere on nanoscale properties of highly efficient Cs0.05MA0.05FA0.9PbI3 perovskite solar cells. Nanoscale 2025, 17, 8861–8871. doi:10.1039/d4nr04205k
  • Haghighirad, A.-A.; Ichikawa, R.; Miyamachi, T.; Ishii, H.; Akamatsu, S.; Masui, E.; Ishiyama, O.; Iwayama, H.; Nakamura, E.; Yokoyama, T.; Inami, E.; Yamada, T. K. STM imaging and electronic correlation in van der Waals ferromagnet Fe3GeTe2. Japanese Journal of Applied Physics 2025, 64, 40805. doi:10.35848/1347-4065/adc7be
  • Bahnmüller, U. J.; Krysiak, Y.; Seewald, T.; Yalçinkaya, Y.; Pluta, D.; Schmidt‐Mende, L.; Weber, S. A. L.; Polarz, S. One‐Step Aerosol Synthesis of Thiocyanate Passivated Hybrid Perovskite Microcrystals: Impact of (Pseudo‐)Halide Additives on Crystallization and Access to a Novel Binary Model. Particle & Particle Systems Characterization 2024, 42. doi:10.1002/ppsc.202400132
  • Alvarez, M. A. G.; Calderón-Martínez, A. I.; Rodríguez-Melgarejo, F.; Hernández-Landaverde, M. A.; Meléndez-Lira, M.; Flores-Ruiz, F. J.; Sandoval, S. J. Effects of the incorporation of copper on the micro structure, charge transport and photoelectrical properties of sputtered ZnTe:Cu films. Journal of Materials Science: Materials in Electronics 2024, 35. doi:10.1007/s10854-024-13267-z
  • Lenton, I. C. D.; Pertl, F.; Shafeek, L.; Waitukaitis, S. R. Beyond the blur: Using experimentally determined point spread functions to improve scanning Kelvin probe imaging. Journal of Applied Physics 2024, 136. doi:10.1063/5.0215151
  • Haghmoradi, H.; Fischer, H.; Bertolini, A.; Galić, I.; Intravaia, F.; Pitschmann, M.; Schimpl, R. A.; Sedmik, R. I. P. Force Metrology with Plane Parallel Plates: Final Design Review and Outlook. Physics 2024, 6, 690–741. doi:10.3390/physics6020045
  • Meyer, E.; Pawlak, R.; Glatzel, T. Scanning probe microscopy. Encyclopedia of Condensed Matter Physics; Elsevier, 2024; pp 51–62. doi:10.1016/b978-0-323-90800-9.00213-4
  • Ishida, N.; Mano, T. Quantitative characterization of built-in potential profile across GaAs p-n junctions using Kelvin probe force microscopy with qPlus sensor AFM. Nanotechnology 2023, 35, 65708–065708. doi:10.1088/1361-6528/ad0b5e
  • Checa, M.; Fuhr, A. S.; Sun, C.; Vasudevan, R.; Ziatdinov, M.; Ivanov, I.; Yun, S. J.; Xiao, K.; Sehirlioglu, A.; Kim, Y.; Sharma, P.; Kelley, K. P.; Domingo, N.; Jesse, S.; Collins, L. High-speed mapping of surface charge dynamics using sparse scanning Kelvin probe force microscopy. Nature communications 2023, 14, 7196. doi:10.1038/s41467-023-42583-x
  • Grévin, B.; Husainy, F.; Aldakov, D.; Aumaître, C. Dual-heterodyne Kelvin probe force microscopy. Beilstein journal of nanotechnology 2023, 14, 1068–1084. doi:10.3762/bjnano.14.88
  • Eftekhari, Z.; Rezaei, N.; Stokkel, H.; Zheng, J.-Y.; Cerreta, A.; Hermes, I.; Nguyen, M.; Rijnders, G.; Saive, R. Spatial mapping of photovoltage and light-induced displacement of on-chip coupled piezo/photodiodes by Kelvin probe force microscopy under modulated illumination. Beilstein journal of nanotechnology 2023, 14, 1059–1067. doi:10.3762/bjnano.14.87
  • Yalcinkaya, Y.; Rohrbeck, P. N.; Schütz, E. R.; Fakharuddin, A.; Schmidt‐Mende, L.; Weber, S. A. Nanoscale Surface Photovoltage Spectroscopy. Advanced Optical Materials 2023, 12. doi:10.1002/adom.202301318
  • Chang, B.; Li, H.; Wang, L.; Pan, L.; Wu, Y.; Liu, Z.; Yin, L. Molecular Ferroelectric with Directional Polarization Field for Efficient Tin‐Based Perovskite Solar Cells. Advanced Functional Materials 2023, 33. doi:10.1002/adfm.202305852
  • Kim, D. S.; Dominguez, R. C.; Mayorga-Luna, R.; Ye, D.; Embley, J.; Tan, T.; Ni, Y.; Liu, Z.; Ford, M.; Gao, F. Y.; Arash, S.; Watanabe, K.; Taniguchi, T.; Kim, S.; Shih, C.-K.; Lai, K.; Yao, W.; Yang, L.; Li, X.; Miyahara, Y. Electrostatic moiré potential from twisted hexagonal boron nitride layers. Nature materials 2023, 23, 65–70. doi:10.1038/s41563-023-01637-7
Other Beilstein-Institut Open Science Activities