Search results

Search for "cavitation" in Full Text gives 31 result(s) in Beilstein Journal of Nanotechnology.

Preferential enrichment and extraction of laser-synthesized nanoparticles in organic phases

  • Theo Fromme,
  • Maximilian L. Spiekermann,
  • Florian Lehmann,
  • Stephan Barcikowski,
  • Thomas Seidensticker and
  • Sven Reichenberger

Beilstein J. Nanotechnol. 2025, 16, 254–263, doi:10.3762/bjnano.16.20

Graphical Abstract
  • that chemical reactions may also occur on longer timescales, during the cavitation bubble phase (microsecond time scale) [60]. The smaller iron nanoparticles are found in the alcohol phase, while the smaller copper nanoparticles prefer the propylene carbonate phase. Hence, another explanation for the
PDF
Album
Supp Info
Full Research Paper
Published 20 Feb 2025

Recent advances in photothermal nanomaterials for ophthalmic applications

  • Jiayuan Zhuang,
  • Linhui Jia,
  • Chenghao Li,
  • Rui Yang,
  • Jiapeng Wang,
  • Wen-an Wang,
  • Heng Zhou and
  • Xiangxia Luo

Beilstein J. Nanotechnol. 2025, 16, 195–215, doi:10.3762/bjnano.16.16

Graphical Abstract
  • , providing additional histological information. In addition to applying the photoacoustic effect to photoacoustic imaging, laser-induced focused ultrasound can also be used to perform high-precision cavitation ablation treatments of ocular tissues [208]. Conclusion Research on photothermal nanomaterials has
PDF
Album
Review
Published 17 Feb 2025

Fabrication of hafnium-based nanoparticles and nanostructures using picosecond laser ablation

  • Abhishek Das,
  • Mangababu Akkanaboina,
  • Jagannath Rathod,
  • R. Sai Prasad Goud,
  • Kanaka Ravi Kumar,
  • Raghu C. Reddy,
  • Ratheesh Ravendran,
  • Katia Vutova,
  • S. V. S. Nageswara Rao and
  • Venugopal Rao Soma

Beilstein J. Nanotechnol. 2024, 15, 1639–1653, doi:10.3762/bjnano.15.129

Graphical Abstract
  • liquid medium. The target material absorbs the pulse energy via the electrons. It transfers it to the lattice, which expulses the surface material as a plasma plume confined because of the pressure created by the surrounding liquid [16][20][23][24]. A cavitation bubble is formed as the energy is
  • transferred to the surrounding liquid from the decaying plasma because of the existing temperature differences between the liquid and the plasma plume, leading to the emergence of a vapour layer with a volume equivalent to the plasma plume [16][20][23][24]. The cavitation bubble collapses because of cyclic
  • liquid exceeds the vapour pressure exerted by HfO2, the cavitation bubble collapses, and the vapour rushes through the liquid in the form of a jet [23][24][41]. The lower temperature of the surrounding liquid leads to the formation of nuclei [23][42][43] with random crystallographic orientation, which
PDF
Album
Full Research Paper
Published 18 Dec 2024

Biomimetic nanocarriers: integrating natural functions for advanced therapeutic applications

  • Hugo Felix Perini,
  • Beatriz Sodré Matos,
  • Carlo José Freire de Oliveira and
  • Marcos Vinicius da Silva

Beilstein J. Nanotechnol. 2024, 15, 1619–1626, doi:10.3762/bjnano.15.127

Graphical Abstract
  • membrane vesicles are prepared, fusion with the nanocarrier can be accomplished by several methods [20][42]. Bath sonication disrupts membranes by forming cavitation bubbles, allowing them to reassemble around the nanocarrier. Optimizing this process requires adjusting exposure time, wave frequency, and
PDF
Album
Perspective
Published 16 Dec 2024

Effect of wavelength and liquid on formation of Ag, Au, Ag/Au nanoparticles via picosecond laser ablation and SERS-based detection of DMMP

  • Sree Satya Bharati Moram,
  • Chandu Byram and
  • Venugopal Rao Soma

Beilstein J. Nanotechnol. 2024, 15, 1054–1069, doi:10.3762/bjnano.15.86

Graphical Abstract
  • with water. The expanding metal/water mixture promotes rapid nucleation and growth of small metal NPs and contributes to forming a cavitation bubble. The hot metal layer also breaks into larger droplets due to instabilities, creating NPs of different sizes within a few nanoseconds of laser exposure [6
PDF
Album
Supp Info
Full Research Paper
Published 19 Aug 2024

Laser synthesis of nanoparticles in organic solvents – products, reactions, and perspectives

  • Theo Fromme,
  • Sven Reichenberger,
  • Katharine M. Tibbetts and
  • Stephan Barcikowski

Beilstein J. Nanotechnol. 2024, 15, 638–663, doi:10.3762/bjnano.15.54

Graphical Abstract
  • synthesis of HCN [79]. The oxidation and phase change of the target surface during LAL was initially published by Ogale et al. [80] in 1987, and nanoparticle oxidation has been addressed in the literature frequently afterwards [53][54][68][69][70]. During the plasma and cavitation bubble phase, reactive
  • efficiency and gas formation. Scaramuzza et al. found varying ablation rates and cavitation bubble sizes depending on the used additive–solvent combination [20], and Zhang et al. found higher yields of gases when working in ethanol–water mixtures [44]. This enhanced gas production can be used to alter the
  • structure of the generated nanoparticles. Laser ablation in water–ethanol mixtures was reported to yield an increased amount of hollow nanoparticles compared to pure water, which was mainly attributed to an elongated lifetime of the cavitation bubble in the mixture [89][90]. It is further possible to form
PDF
Album
Review
Published 05 Jun 2024

Plasmonic nanotechnology for photothermal applications – an evaluation

  • A. R. Indhu,
  • L. Keerthana and
  • Gnanaprakash Dharmalingam

Beilstein J. Nanotechnol. 2023, 14, 380–419, doi:10.3762/bjnano.14.33

Graphical Abstract
  • [83]. Plasmonic nanobubbles (formed when the irradiation fluence exceeded a threshold value), although being excellent tunable scatterers themselves, did not result in thermal phenomena such as heating and only led to mechanical phenomena such as cavitation effects. Explosive boiling is of explicit
PDF
Album
Review
Published 27 Mar 2023

Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes

  • Akeem Adeyemi Oladipo and
  • Faisal Suleiman Mustafa

Beilstein J. Nanotechnol. 2023, 14, 291–321, doi:10.3762/bjnano.14.26

Graphical Abstract
  • -photochemical techniques, such as chemical, radiation-induced, cavitation, electrochemical techniques, and photochemical processes [11][15][16][17]. One of the AOPs, photocatalysis, uses natural light – a resource that is both clean and recyclable – to completely degrade a variety of organic pollutants and
PDF
Album
Review
Published 03 Mar 2023

Non-stoichiometric magnetite as catalyst for the photocatalytic degradation of phenol and 2,6-dibromo-4-methylphenol – a new approach in water treatment

  • Joanna Kisała,
  • Anna Tomaszewska and
  • Przemysław Kolek

Beilstein J. Nanotechnol. 2022, 13, 1531–1540, doi:10.3762/bjnano.13.126

Graphical Abstract
  • regulations to them [8]. Consequently, there is a growing need to develop processes for removing BPs from wastewater. In recent decades, much attention has been paid to advanced oxidation processes (AOPs) in the research and development of wastewater treatment technologies [7][9]. Processes such as cavitation
PDF
Album
Supp Info
Full Research Paper
Published 15 Dec 2022

Reliable fabrication of transparent conducting films by cascade centrifugation and Langmuir–Blodgett deposition of electrochemically exfoliated graphene

  • Teodora Vićentić,
  • Stevan Andrić,
  • Vladimir Rajić and
  • Marko Spasenović

Beilstein J. Nanotechnol. 2022, 13, 666–674, doi:10.3762/bjnano.13.58

Graphical Abstract
  • the range of 1–10 layers, in a range of different liquids, at a wide range of concentrations [13][14]. The mechanism of ultrasonic exfoliation involves ultrasonic waves in liquid media creating bubbles or voids in the liquid, which generate shear forces or cavitation bubbles upon collapsing, which
PDF
Album
Full Research Paper
Published 18 Jul 2022

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
  • modality, it is attractive to combine it with rationally designed nanoparticles for theranostics. The mechanisms of US interactions include cavitation microbubbles (MBs), acoustic droplet vaporization, acoustic radiation force, localized thermal effects, reactive oxygen species generation, sonoluminescence
  • their cargo in response to locally elevated temperatures [24]. Under some circumstances, small mechanical displacements of the tissue can result in nucleation, growth, and collapse of gas bubbles in a process known as acoustic cavitation, which is responsible for drug release from some structures [27
  • quest for more potent treatment and diagnostic procedures. In this review, the mechanisms of action of US-responsive nanomaterials, including cavitation, acoustic radiation force (ARF), phase transition, reactive oxygen species (ROS) production, and hyperthermia will be discussed in the first step. A
PDF
Album
Review
Published 11 Aug 2021

Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action

  • Matías Guerrero Correa,
  • Fernanda B. Martínez,
  • Cristian Patiño Vidal,
  • Camilo Streitt,
  • Juan Escrig and
  • Carol Lopez de Dicastillo

Beilstein J. Nanotechnol. 2020, 11, 1450–1469, doi:10.3762/bjnano.11.129

Graphical Abstract
  • cavitation that can be used for the production or modification of a wide range of nanostructured materials. Some examples are spherical Ag [63] and CuO NPs [65], and square-shaped CeO2 NPs [64]. The main advantage of this technique is the simplicity in maintaining the operating conditions (ambient conditions
PDF
Album
Review
Published 25 Sep 2020

Multilayer capsules made of weak polyelectrolytes: a review on the preparation, functionalization and applications in drug delivery

  • Varsha Sharma and
  • Anandhakumar Sundaramurthy

Beilstein J. Nanotechnol. 2020, 11, 508–532, doi:10.3762/bjnano.11.41

Graphical Abstract
PDF
Album
Review
Published 27 Mar 2020

Ultrasonication-assisted synthesis of CsPbBr3 and Cs4PbBr6 perovskite nanocrystals and their reversible transformation

  • Longshi Rao,
  • Xinrui Ding,
  • Xuewei Du,
  • Guanwei Liang,
  • Yong Tang,
  • Kairui Tang and
  • Jin Z. Zhang

Beilstein J. Nanotechnol. 2019, 10, 666–676, doi:10.3762/bjnano.10.66

Graphical Abstract
  • performance when the immersion height of the vibrating spear is set at 1/5 of the total liquid height. Ultrasonication results in a combination of thermal, vibrational, and acoustic cavitation, i.e., the formation, growth, and implosive collapse of bubbles in liquids [32][33][34]. In the center of these
PDF
Album
Supp Info
Full Research Paper
Published 06 Mar 2019

New micro/mesoporous nanocomposite material from low-cost sources for the efficient removal of aromatic and pathogenic pollutants from water

  • Emmanuel I. Unuabonah,
  • Robert Nöske,
  • Jens Weber,
  • Christina Günter and
  • Andreas Taubert

Beilstein J. Nanotechnol. 2019, 10, 119–131, doi:10.3762/bjnano.10.11

Graphical Abstract
  • interstitial voids among the particles. A very modest hysteresis is observed, which closes at approximately p/p0 = 0.45. This result is indicative of a few mesopores with restricted access within the material, which are emptied by cavitation [27]. Furthermore, analysis of 2Z-HYCA vs the synthesis temperature
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2019

Enhancement of X-ray emission from nanocolloidal gold suspensions under double-pulse excitation

  • Wei-Hung Hsu,
  • Frances Camille P. Masim,
  • Armandas Balčytis,
  • Hsin-Hui Huang,
  • Tetsu Yonezawa,
  • Aleksandr A. Kuchmizhak,
  • Saulius Juodkazis and
  • Koji Hatanaka

Beilstein J. Nanotechnol. 2018, 9, 2609–2617, doi:10.3762/bjnano.9.242

Graphical Abstract
  • pre-pulse excitation of the solution film. When the pre-pulse energy increases, the main pulse encounters a strongly excited ENZ shell around the gold nanoparticles as well as, at longer delays, surface roughening of the solution film and cavitation bubbles below the surface [47]. Such scenarios are
  • . Nanoroughening of water surface evolves at longer times. Disintegration of gold nanoparticles is expected inside the cavitation bubble. Intensity of incident beam: .
PDF
Album
Full Research Paper
Published 01 Oct 2018

Numerical investigation of the tribological performance of micro-dimple textured surfaces under hydrodynamic lubrication

  • Kangmei Li,
  • Dalei Jing,
  • Jun Hu,
  • Xiaohong Ding and
  • Zhenqiang Yao

Beilstein J. Nanotechnol. 2017, 8, 2324–2338, doi:10.3762/bjnano.8.232

Graphical Abstract
  • the effects of groove texture on fully lubricated sliding with cavitation. The effects of cavitation pressure, sliding speed, sliding pitch angle and texture scale were discussed. Ramesh et al. [25] solved the N-S equations by using two-dimensional CFD and predicted the texture-induced lift. The
  • -dimple array under the condition of hydrodynamic lubrication. The pressure and velocity distribution are obtained using the finite volume method. Negative pressure is permitted and cavitation is not yet considered. The main mechanism for the improvement of the tribological performance by micro-dimple
PDF
Album
Full Research Paper
Published 06 Nov 2017

Preparation and characterization of polycarbonate/multiwalled carbon nanotube nanocomposites

  • Claudio Larosa,
  • Niranjan Patra,
  • Marco Salerno,
  • Lara Mikac,
  • Remo Merijs Meri and
  • Mile Ivanda

Beilstein J. Nanotechnol. 2017, 8, 2026–2031, doi:10.3762/bjnano.8.203

Graphical Abstract
  • of 30 min with on/off cycles (4 s and 2 s, respectively) in order to prevent heating which could occur during acoustic cavitation. The initial swelling of MWCNT agglomerates by solvent infiltration and interaction was considered as a crucial precondition to obtain a good dispersion of MWCNTs inside
PDF
Album
Full Research Paper
Published 27 Sep 2017

Fabrication of carbon nanospheres by the pyrolysis of polyacrylonitrile–poly(methyl methacrylate) core–shell composite nanoparticles

  • Dafu Wei,
  • Youwei Zhang and
  • Jinping Fu

Beilstein J. Nanotechnol. 2017, 8, 1897–1908, doi:10.3762/bjnano.8.190

Graphical Abstract
  • observed in the cavitation of non-covalently-connected micelles composed of carboxyl-ended polybutadiene cores and crosslinked poly(vinyl alcohol) shells in THF/water (9/1, v/v) mixture [44]. It was very possible that the size of PAN chains was too large to diffuse out of the PMMA shell, thus, the
PDF
Album
Supp Info
Full Research Paper
Published 11 Sep 2017

Laser irradiation in water for the novel, scalable synthesis of black TiOx photocatalyst for environmental remediation

  • Massimo Zimbone,
  • Giuseppe Cacciato,
  • Mohamed Boutinguiza,
  • Vittorio Privitera and
  • Maria Grazia Grimaldi

Beilstein J. Nanotechnol. 2017, 8, 196–202, doi:10.3762/bjnano.8.21

Graphical Abstract
  • , high temperature and pressure are maintained for several μs. Water dissociates and reacts with titanium atoms ejected from the target, realizing H–Ti–Ox. In addition, a cavitation bubble appears, expands, shrinks and collapses in the timescale of hundreds of μs. The collapse is a complex phenomenon
PDF
Album
Full Research Paper
Published 19 Jan 2017

The role of morphology and coupling of gold nanoparticles in optical breakdown during picosecond pulse exposures

  • Yevgeniy R. Davletshin and
  • J. Carl Kumaradas

Beilstein J. Nanotechnol. 2016, 7, 869–880, doi:10.3762/bjnano.7.79

Graphical Abstract
  • Bremsstrahlung absorption and grows through impact ionization known as electron avalanche [32]. LIB induces breakage of molecular and atomic bonds and will be accompanied by luminescence, cavitation, and the formation of bubbles and shock waves [22][33]. The optical breakdown threshold in an aqueous medium that
PDF
Album
Supp Info
Full Research Paper
Published 16 Jun 2016

Sonochemical co-deposition of antibacterial nanoparticles and dyes on textiles

  • Ilana Perelshtein,
  • Anat Lipovsky,
  • Nina Perkas,
  • Tzanko Tzanov and
  • Aharon Gedanken

Beilstein J. Nanotechnol. 2016, 7, 1–8, doi:10.3762/bjnano.7.1

Graphical Abstract
  • cavitation collapse occurs, many molecules are brought together to form a nanoparticle. Such a nanoparticle consists of a very high amount of desired molecules [26][27]. In the current case, the molecules of the dye that are presented in the solution form the nanoparticles, in addition to the MO that are
PDF
Album
Full Research Paper
Published 04 Jan 2016

Aquatic versus terrestrial attachment: Water makes a difference

  • Petra Ditsche and
  • Adam P. Summers

Beilstein J. Nanotechnol. 2014, 5, 2424–2439, doi:10.3762/bjnano.5.252

Graphical Abstract
  • Stefan’s equation. Under increasing stress, air bubbles in the viscous fluid can cause cavitation, which means that growing bubbles provide extra volume required for the plate separation [48]. Another process that causes instabilities is called air fingering, air moves in from the edge of the sample to the
  • surfaces [68][72]. Many superhydrophobic surfaces are known for their ability to hold an air film under water for a varying time span [73][74][75]. Therefore, these surfaces could hold micro bubbles that serve as cavitation nucleating sites as in seawater. Whether this effect would occur after a long-time
  • exposure of the substrates or at higher pressure has not been resolved. Ambient pressure also has an impact on cavitation [76]. It is possible that extremely high pressures can reduce the cavitation threshold, but this is just likely to matter at great depth. The attachment force of the sucker (Fs) is
PDF
Album
Review
Published 17 Dec 2014

Liquid-phase exfoliated graphene: functionalization, characterization, and applications

  • Mildred Quintana,
  • Jesús Iván Tapia and
  • Maurizio Prato

Beilstein J. Nanotechnol. 2014, 5, 2328–2338, doi:10.3762/bjnano.5.242

Graphical Abstract
  • [19]. The physical and chemical phenomena associated with ultrasonic waves are cavitation and nebulization. Cavitation induces extreme conditions by collapsing air bubbles which initiates chemical reactions, while nebulization furthers the reaction within the heated droplets. These processes induce
PDF
Album
Review
Published 04 Dec 2014

Current state of laser synthesis of metal and alloy nanoparticles as ligand-free reference materials for nano-toxicological assays

  • Christoph Rehbock,
  • Jurij Jakobi,
  • Lisa Gamrad,
  • Selina van der Meer,
  • Daniela Tiedemann,
  • Ulrike Taylor,
  • Wilfried Kues,
  • Detlef Rath and
  • Stephan Barcikowski

Beilstein J. Nanotechnol. 2014, 5, 1523–1541, doi:10.3762/bjnano.5.165

Graphical Abstract
  • different species like ionized atoms, clusters as well as larger fragments [24][46]. This is followed by the formation of a cavitation bubble on a microsecond scale, while the bubble confines crystalline nanoparticles [47]. In case of picosecond laser pulses the laser beam does not interact with the plasma
PDF
Album
Video
Review
Published 12 Sep 2014
Other Beilstein-Institut Open Science Activities