Search results

Search for "accelerating voltage" in Full Text gives 154 result(s) in Beilstein Journal of Nanotechnology.

Electron beam-based direct writing of nanostructures using a palladium β-ketoesterate complex

  • Chinmai Sai Jureddy,
  • Krzysztof Maćkosz,
  • Aleksandra Butrymowicz-Kubiak,
  • Iwona B. Szymańska,
  • Patrik Hoffmann and
  • Ivo Utke

Beilstein J. Nanotechnol. 2025, 16, 530–539, doi:10.3762/bjnano.16.41

Graphical Abstract
  • accelerating voltage of 200 kV. For this purpose, the FEB deposits were prepared on an ultrathin carbon support layer of less than 3 nm thickness supported by a lacey carbon membrane (PELCO) on a TEM grid. The TEM grid was fixed to the heatable stage. The deposition process was carried out in a Philips XL30
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2025

N2+-implantation-induced tailoring of structural, morphological, optical, and electrical characteristics of sputtered molybdenum thin films

  • Usha Rani,
  • Kafi Devi,
  • Divya Gupta and
  • Sanjeev Aggarwal

Beilstein J. Nanotechnol. 2025, 16, 495–509, doi:10.3762/bjnano.16.38

Graphical Abstract
  • the properties of argon-ion-implanted Mo thin films deposited via ion beam sputtering, varying deposition parameters such as accelerating voltage, incidence angle, and chamber pressure. Films deposited at near-normal incidence exhibited compressive stress and a nearly linear increase with the
  • accelerating voltage. At grazing incidence, the observed stress is either minimal or slightly tensile and is mostly unaffected by the accelerating voltage. Tripathi et al. [18] examined the temperature-dependent surface alterations in Mo films induced by He+ ion irradiation within the 773–1073 K range as a
PDF
Album
Full Research Paper
Published 01 Apr 2025

Graphene oxide–chloroquine conjugate induces DNA damage in A549 lung cancer cells through autophagy modulation

  • Braham Dutt Arya,
  • Sandeep Mittal,
  • Prachi Joshi,
  • Alok Kumar Pandey,
  • Jaime E. Ramirez-Vick,
  • Govind Gupta and
  • Surinder P. Singh

Beilstein J. Nanotechnol. 2025, 16, 316–332, doi:10.3762/bjnano.16.24

Graphical Abstract
  • analysis using the TecnaiTM G2 Spirit (FEI Company, Eindhoven, Netherlands) instrument at an accelerating voltage of 80 kV equipped with a Gatan camera. Propidium iodide uptake analysis Propidium iodide (PI), a positively charged nucleic acid dye, specifically exhibits fluorescence after binding with DNA
PDF
Album
Supp Info
Full Research Paper
Published 03 Mar 2025

Fabrication of hafnium-based nanoparticles and nanostructures using picosecond laser ablation

  • Abhishek Das,
  • Mangababu Akkanaboina,
  • Jagannath Rathod,
  • R. Sai Prasad Goud,
  • Kanaka Ravi Kumar,
  • Raghu C. Reddy,
  • Ratheesh Ravendran,
  • Katia Vutova,
  • S. V. S. Nageswara Rao and
  • Venugopal Rao Soma

Beilstein J. Nanotechnol. 2024, 15, 1639–1653, doi:10.3762/bjnano.15.129

Graphical Abstract
  • mbar) using an electron beam melting furnace having a beam power of 60 kW (ELIT 60) at an accelerating voltage of 24 kV in a water-cooled crucible with feeding mechanism and an extraction system [32]. All operations were conducted at the Centre for Materials for Electronics Technology (CMET), Hyderabad
PDF
Album
Full Research Paper
Published 18 Dec 2024

Functional morphology of cleaning devices in the damselfly Ischnura elegans (Odonata, Coenagrionidae)

  • Silvana Piersanti,
  • Gianandrea Salerno,
  • Wencke Krings,
  • Stanislav Gorb and
  • Manuela Rebora

Beilstein J. Nanotechnol. 2024, 15, 1260–1272, doi:10.3762/bjnano.15.102

Graphical Abstract
  • scanning electron microscope FE SEM LEO 1525 (ZEISS, Oberkochen, Germany) at 5 kV accelerating voltage. Confocal laser scanning microscopy A CLSM-based method established by Michels and Gorb [37], to analyze material compositions and their gradients in arthropod cuticle by visualizing autofluorescence, was
PDF
Album
Supp Info
Full Research Paper
Published 16 Oct 2024

Electrospun polysuccinimide scaffolds containing different salts as potential wound dressing material

  • Veronika Pálos,
  • Krisztina S. Nagy,
  • Rita Pázmány,
  • Krisztina Juriga-Tóth,
  • Bálint Budavári,
  • Judit Domokos,
  • Dóra Szabó,
  • Ákos Zsembery and
  • Angela Jedlovszky-Hajdu

Beilstein J. Nanotechnol. 2024, 15, 781–796, doi:10.3762/bjnano.15.65

Graphical Abstract
  • × magnification, applying a 10 kV accelerating voltage. The fiber diameters of the scaffolds were determined by the Fiji ImageJ software (open-source software). In each case, 50 fiber diameters were measured. The results were statistically analyzed by the software GraphPad Prism 8.0.1 (GraphPad Inc., USA
PDF
Album
Supp Info
Full Research Paper
Published 02 Jul 2024

Level set simulation of focused ion beam sputtering of a multilayer substrate

  • Alexander V. Rumyantsev,
  • Nikolai I. Borgardt,
  • Roman L. Volkov and
  • Yuri A. Chaplygin

Beilstein J. Nanotechnol. 2024, 15, 733–742, doi:10.3762/bjnano.15.61

Graphical Abstract
  • beam workstation Helios Nanolab 650. Both types of test structures were fabricated using 30 kV accelerating voltage and an ion beam current of I = 900 pA. The chamber pressure was not higher then 10−6 mbar. A layer of platinum and amorphous carbon (Pt + a-C) was deposited onto the manufactured
  • structures to protect the surface. Cross section specimens for transmission electron microscopy investigation were prepared using in situ lift-out [39]. Final polishing was performed at the glancing incidence angles of the ion beam through the gradual decrease of the accelerating voltage from 30 to 2 kV. The
  • STEM micrographs were obtained by means of the high-angle annular dark-field detector of a Titan Themis 200 transmission electron microscope at 200 kV accelerating voltage. Chemical analysis of the selected specimen areas was carried out by energy-dispersive X-ray spectroscopy with the use of a four
PDF
Album
Full Research Paper
Published 24 Jun 2024

Elastic modulus of β-Ga2O3 nanowires measured by resonance and three-point bending techniques

  • Annamarija Trausa,
  • Sven Oras,
  • Sergei Vlassov,
  • Mikk Antsov,
  • Tauno Tiirats,
  • Andreas Kyritsakis,
  • Boris Polyakov and
  • Edgars Butanovs

Beilstein J. Nanotechnol. 2024, 15, 704–712, doi:10.3762/bjnano.15.58

Graphical Abstract
  • °C. Characterisation The morphology of as-grown NWs was examined using SEM (Helios 5 UX DualBeam). The measurements were carried out at an acceleration voltage of 5 keV and a beam current of 25 pA. Transmission electron microscopy (Tecnai GF20, FEI) at an accelerating voltage of 200 kV provided
PDF
Album
Supp Info
Full Research Paper
Published 18 Jun 2024

Influence of conductive carbon and MnCo2O4 on morphological and electrical properties of hydrogels for electrochemical energy conversion

  • Sylwia Pawłowska,
  • Karolina Cysewska,
  • Yasamin Ziai,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2024, 15, 57–70, doi:10.3762/bjnano.15.6

Graphical Abstract
  • an accelerating voltage of 10 kV. Before imaging, the hydrogel samples were freeze-dried and coated with a 10 nm gold layer. The chemical composition of the hydrogel was analysed with a Thermo Fisher Scientific silicon drift detector energy-dispersive X-ray spectroscope. For characterisation of the
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2024

TEM sample preparation of lithographically patterned permalloy nanostructures on silicon nitride membranes

  • Joshua Williams,
  • Michael I. Faley,
  • Joseph Vimal Vas,
  • Peng-Han Lu and
  • Rafal E. Dunin-Borkowski

Beilstein J. Nanotechnol. 2024, 15, 1–12, doi:10.3762/bjnano.15.1

Graphical Abstract
  • techniques, a one-time exposure is possible with the help of high accelerating voltage during electron beam exposure. In this process, rather than doing one resist deposition and exposure after another, the layer selectivity is controlled by the electron beam dose and the sensitivity of the two layers. Only
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2024

Isolation of cubic Si3P4 in the form of nanocrystals

  • Polina K. Nikiforova,
  • Sergei S. Bubenov,
  • Vadim B. Platonov,
  • Andrey S. Kumskov,
  • Nikolay N. Kononov,
  • Tatyana A. Kuznetsova and
  • Sergey G. Dorofeev

Beilstein J. Nanotechnol. 2023, 14, 971–979, doi:10.3762/bjnano.14.80

Graphical Abstract
  • , USA). TEM was carried out on a FEI Osiris microscope (Thermo Fisher Scientific, USA) at an accelerating voltage of 200 kV. Raman scattering of pellets of Si3P4 samples was obtained with an iRamanPlus (BW Tech) portable Raman spectrometer (532 nm laser). The integration time was 10 min, and eight
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2023

Upscaling the urea method synthesis of CoAl layered double hydroxides

  • Camilo Jaramillo-Hernández,
  • Víctor Oestreicher,
  • Martín Mizrahi and
  • Gonzalo Abellán

Beilstein J. Nanotechnol. 2023, 14, 927–938, doi:10.3762/bjnano.14.76

Graphical Abstract
  • microscope at an accelerating voltage of 20 kV. Atomic force microscopy (AFM) AFM was carried out with a Bruker Dimension Icon microscope in scan-assist-mode. A Bruker Scanasyst-Air silicon tip with a diameter of around 10 nm was used to obtain images with a resolution of 512 × 512 or 1024 × 1024 pixels. The
  • Gwyddion software was used for flattening and image correction. Transmission electron microscopy (TEM) Transmission electron microscopy was carried out using a JEOL JEM-1010 at 100 kV accelerating voltage and a Tecnai F20 operated at 200 kV. Images were acquired in bright-field mode with an objective
PDF
Album
Supp Info
Full Research Paper
Published 11 Sep 2023

Carboxylic acids and light interact to affect nanoceria stability and dissolution in acidic aqueous environments

  • Matthew L. Hancock,
  • Eric A. Grulke and
  • Robert A. Yokel

Beilstein J. Nanotechnol. 2023, 14, 762–780, doi:10.3762/bjnano.14.63

Graphical Abstract
  • duration. The Thermo Scientific Talos F200X instrument equipped with a SuperX G2 EDS detector was operated at an accelerating voltage of 200 keV. The TEM images were recorded on a Ceta CCD camera. DLS was performed using a Brookhaven 90Plus particle size analyzer. Three analysis runs of 5 min each were
PDF
Album
Supp Info
Full Research Paper
Published 27 Jun 2023

Biocatalytic synthesis and ordered self-assembly of silica nanoparticles via a silica-binding peptide

  • Mustafa Gungormus

Beilstein J. Nanotechnol. 2023, 14, 280–290, doi:10.3762/bjnano.14.25

Graphical Abstract
  • ). All SEM analyses were performed using a SU5000 SEM (Hitachi, Japan) at 10 kV accelerating voltage. UV–vis absorbance spectroscopy The particles were assembled on quartz slides by vertical deposition as described before. UV–vis absorbance analysis was made using a T80+ UV–vis spectrophotometer (PG
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2023

A novel approach to pulsed laser deposition of platinum catalyst on carbon particles for use in polymer electrolyte membrane fuel cells

  • Bogusław Budner,
  • Wojciech Tokarz,
  • Sławomir Dyjak,
  • Andrzej Czerwiński,
  • Bartosz Bartosewicz and
  • Bartłomiej Jankiewicz

Beilstein J. Nanotechnol. 2023, 14, 190–204, doi:10.3762/bjnano.14.19

Graphical Abstract
  • accelerating voltage of 20 kV and identical work parameters of the EDS detector. The quality of platinum coating on the carbon material was assessed based on images made using a transmission electron microscope (TEM) equipped with an energy-dispersive X-ray spectrometer (EDX). TEM measurements were carried out
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2023

Two-step single-reactor synthesis of oleic acid- or undecylenic acid-stabilized magnetic nanoparticles by thermal decomposition

  • Mykhailo Nahorniak,
  • Pamela Pasetto,
  • Jean-Marc Greneche,
  • Volodymyr Samaryk,
  • Sandy Auguste,
  • Anthony Rousseau,
  • Nataliya Nosova and
  • Serhii Varvarenko

Beilstein J. Nanotechnol. 2023, 14, 11–22, doi:10.3762/bjnano.14.2

Graphical Abstract
  • an accelerating voltage of 200 kV was applied. The electronic diffraction patterns were obtained using the SAED technique. The XRD diffraction patterns were collected using a PANalytical MPD-PRO diffractometer equipped with a linear X’celerator detector and a Co Kα lamp as a source of radiation
PDF
Album
Supp Info
Full Research Paper
Published 03 Jan 2023

In search of cytotoxic selectivity on cancer cells with biogenically synthesized Ag/AgCl nanoparticles

  • Mitzi J. Ramírez-Hernández,
  • Mario Valera-Zaragoza,
  • Omar Viñas-Bravo,
  • Ariana A. Huerta-Heredia,
  • Miguel A. Peña-Rico,
  • Erick A. Juarez-Arellano,
  • David Paniagua-Vega,
  • Eduardo Ramírez-Vargas and
  • Saúl Sánchez-Valdes

Beilstein J. Nanotechnol. 2022, 13, 1505–1519, doi:10.3762/bjnano.13.124

Graphical Abstract
  • . Transmission electron microscopy images were acquired on a JEOL 1010 microscope, with an accelerating voltage of 80 kV. For that, samples were pre-prepared in acetone and sonicated for 20 min, then dried at room temperature. Thermogravimetric analysis was performed on a Perkin Elmer STA 6000 simultaneous
PDF
Album
Full Research Paper
Published 13 Dec 2022

Supramolecular assembly of pentamidine and polymeric cyclodextrin bimetallic core–shell nanoarchitectures

  • Alexandru-Milentie Hada,
  • Nina Burduja,
  • Marco Abbate,
  • Claudio Stagno,
  • Guy Caljon,
  • Louis Maes,
  • Nicola Micale,
  • Massimiliano Cordaro,
  • Angela Scala,
  • Antonino Mazzaglia and
  • Anna Piperno

Beilstein J. Nanotechnol. 2022, 13, 1361–1369, doi:10.3762/bjnano.13.112

Graphical Abstract
  • ultrapure water. The results are reported as the mean of three separate measurements ± the standard deviation (SD). The morphological characterization was performed using a high-resolution TecnaiG2 F20 XTWIN TEM with a 200 kV accelerating voltage. NMR spectra were recorded on a Varian 500 MHz spectrometer
PDF
Album
Supp Info
Full Research Paper
Published 18 Nov 2022

Effects of focused electron beam irradiation parameters on direct nanostructure formation on Ag surfaces

  • Jānis Sniķeris,
  • Vjačeslavs Gerbreders,
  • Andrejs Bulanovs and
  • Ēriks Sļedevskis

Beilstein J. Nanotechnol. 2022, 13, 1004–1010, doi:10.3762/bjnano.13.87

Graphical Abstract
  • changed while the other parameters were kept constant. The accelerating voltage U was equal to 30 kV in all experiments and the angle of incidence α was equal to 0°, unless stated otherwise. Following irradiation, the height and volume of the structures formed in irradiated points were determined by non
PDF
Album
Full Research Paper
Published 22 Sep 2022

Interaction between honeybee mandibles and propolis

  • Leonie Saccardi,
  • Franz Brümmer,
  • Jonas Schiebl,
  • Oliver Schwarz,
  • Alexander Kovalev and
  • Stanislav Gorb

Beilstein J. Nanotechnol. 2022, 13, 958–974, doi:10.3762/bjnano.13.84

Graphical Abstract
  • studied using a SEM (Hitachi S-4800, Hitachi High-Technologies Corp., Tokyo, Japan) at 3 kV accelerating voltage. Images of the spoon-shaped mandible tip were taken systematically and later assembled into one high resolution image. Higher magnified pictures were taken in characteristic areas of the
  • (Hitachi S-4800, Hitachi High-Technologies Corp., Tokyo, Japan) equipped with a cryopreparation system (Gatan ALTO 2500, Gatan, Inc., Abingdon, UK) at 3 kV accelerating voltage. Image processing SEM images were processed using Gimp, version 2.10.14. All adjustments were applied to the whole image. Color
PDF
Album
Full Research Paper
Published 14 Sep 2022

Hierachical epicuticular wax coverage on leaves of Deschampsia antarctica as a possible adaptation to severe environmental conditions

  • Elena V. Gorb,
  • Iryna A. Kozeretska and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2022, 13, 807–816, doi:10.3762/bjnano.13.71

Graphical Abstract
  • (Hitachi High-Technologies Corporation, Tokyo, Japan) at 3 kV accelerating voltage. Description of trichomes was performed according to [14]. Types of epicuticular wax structures were identified according to [15]. Morphometric variables of surface features were measured from digital images using the
PDF
Album
Full Research Paper
Published 22 Aug 2022

Detection and imaging of Hg(II) in vivo using glutathione-functionalized gold nanoparticles

  • Gufeng Li,
  • Shaoqing Li,
  • Rui Wang,
  • Min Yang,
  • Lizhu Zhang,
  • Yanli Zhang,
  • Wenrong Yang and
  • Hongbin Wang

Beilstein J. Nanotechnol. 2022, 13, 549–559, doi:10.3762/bjnano.13.46

Graphical Abstract
  • were of analytical grade. TEM was carried out using a JEM-2100 transmission electron microscope (JEOL, Japan) at an accelerating voltage of 200 kV. UV–vis absorption spectra were obtained using a UV-2100 Spectrophotometer (Shimadzu, Japan). Fluorescence spectra were recorded using an F-7000
PDF
Album
Supp Info
Full Research Paper
Published 23 Jun 2022

Enhancement of the piezoelectric coefficient in PVDF-TrFe/CoFe2O4 nanocomposites through DC magnetic poling

  • Marco Fortunato,
  • Alessio Tamburrano,
  • Maria Paola Bracciale,
  • Maria Laura Santarelli and
  • Maria Sabrina Sarto

Beilstein J. Nanotechnol. 2021, 12, 1262–1270, doi:10.3762/bjnano.12.93

Graphical Abstract
  • °C and a DC magnetic field was applied through a ferromagnetic core (Figure 8). The morphology of the PVDF-TrFe/CoFe2O4 nanocomposite thin films was investigated using a field-emission scanning electron microscope (FESEM, Auriga, Carl Zeiss) operated with an accelerating voltage of 5 kV. Chemical
PDF
Album
Full Research Paper
Published 19 Nov 2021

High-yield synthesis of silver nanowires for transparent conducting PET films

  • Gul Naz,
  • Hafsa Asghar,
  • Muhammad Ramzan,
  • Muhammad Arshad,
  • Rashid Ahmed,
  • Muhammad Bilal Tahir,
  • Bakhtiar Ul Haq,
  • Nadeem Baig and
  • Junaid Jalil

Beilstein J. Nanotechnol. 2021, 12, 624–632, doi:10.3762/bjnano.12.51

Graphical Abstract
  • operated at an accelerating voltage of 10 kV and ZEISS SEM operated at an accelerating voltage of 20 kV) were utilized. Luminescence measurements were carried out by using a Cary Eclipse MY18060003 photoluminescence spectrometer in the wavelength range of 400–700 nm while exciting the sample at 300 nm
PDF
Album
Full Research Paper
Published 01 Jul 2021

The preparation temperature influences the physicochemical nature and activity of nanoceria

  • Robert A. Yokel,
  • Wendel Wohlleben,
  • Johannes Georg Keller,
  • Matthew L. Hancock,
  • Jason M. Unrine,
  • D. Allan Butterfield and
  • Eric A. Grulke

Beilstein J. Nanotechnol. 2021, 12, 525–540, doi:10.3762/bjnano.12.43

Graphical Abstract
  • approximately 5 s and dried overnight at room temperature. Electron microscopy was performed on a Thermo Scientific Talos F200X operated at an accelerating voltage of 200 keV. Images were recorded with a Ceta CCD camera. The mean and Feret diameters and area, and their standard deviation, minimum, and maximum
PDF
Album
Supp Info
Full Research Paper
Published 04 Jun 2021
Other Beilstein-Institut Open Science Activities