Search results

Search for "SQUID" in Full Text gives 79 result(s) in Beilstein Journal of Nanotechnology.

High-temperature magnetism and microstructure of a semiconducting ferromagnetic (GaSb)1−x(MnSb)x alloy

  • Leonid N. Oveshnikov,
  • Elena I. Nekhaeva,
  • Alexey V. Kochura,
  • Alexander B. Davydov,
  • Mikhail A. Shakhov,
  • Sergey F. Marenkin,
  • Oleg A. Novodvorskii,
  • Alexander P. Kuzmenko,
  • Alexander L. Vasiliev,
  • Boris A. Aronzon and
  • Erkki Lahderanta

Beilstein J. Nanotechnol. 2018, 9, 2457–2465, doi:10.3762/bjnano.9.230

Graphical Abstract
  • to H = 50 kOe using a superconducting quantum interference device (SQUID) magnetometer S600X (Cryogenic, UK). The electrical and magnetotransport properties were investigated at temperatures of T = 2–320 K using a standard six-probe geometry in pulsed magnetic fields up to H = 300 kOe. The studied
  • agreement with values of Hc ≈ 130 Oe and Hsat ≈ 4 kOe obtained from SQUID data with the magnetic field oriented perpendicularly to the sample plane. Note, that the values of Hc and Hsat in Table 1 were obtained with the magnetic field oriented parallel to the sample plane. The difference between the values
  • were performed with the magnetic field oriented parallel to the sample plane (solid symbols) and perpendicularly to it (open symbols). The inset shows the hysteresis loop at low fields. (b) Temperature dependence of the remanent magnetization. Open circles are SQUID data for sample GM3, red squares are
PDF
Album
Full Research Paper
Published 14 Sep 2018

Magnetism and magnetoresistance of single Ni–Cu alloy nanowires

  • Andreea Costas,
  • Camelia Florica,
  • Elena Matei,
  • Maria Eugenia Toimil-Molares,
  • Ionel Stavarache,
  • Andrei Kuncser,
  • Victor Kuncser and
  • Ionut Enculescu

Beilstein J. Nanotechnol. 2018, 9, 2345–2355, doi:10.3762/bjnano.9.219

Graphical Abstract
  • extremely low associated magnetic moment needing peculiar experimental configurations and specific ultra-sensitive magnetic sensors such as micro-SQUID (superconducting quantum interference device) detectors [26]. Arrays of such nanowires (thousands of single elements) can be investigated by usual SQUID
  • nanowires can be estimated from typical SQUID magnetometry measurements performed on arrays of nanowires, as reported in [27]. These four samples of single NixCu1−x alloy magnetic nanowires of different compositions of Ni (0.2 < x < 0.92) and with diameters of about 100 nm (see Figure 1d), contacted as
  • constant (the magnetocrystalline anisotropy constant of the material is proven to be less relevant in structures where the shape anisotropy is dominant). To provide realistic values for MS under similar conditions to the magnetoresistance measurements, hysteresis loops at 300 K were collected by SQUID
PDF
Album
Supp Info
Full Research Paper
Published 30 Aug 2018

Uniform cobalt nanoparticles embedded in hexagonal mesoporous nanoplates as a magnetically separable, recyclable adsorbent

  • Can Zhao,
  • Yuexiao Song,
  • Tianyu Xiang,
  • Wenxiu Qu,
  • Shuo Lou,
  • Xiaohong Yin and
  • Feng Xin

Beilstein J. Nanotechnol. 2018, 9, 1770–1781, doi:10.3762/bjnano.9.168

Graphical Abstract
  • magnetometer (VSM) with an applied magnetic field between −20 kOe and 20 kOe at room temperature (SQUID-VSM, USA). Atomic force microscopy (AFM) was performed on an AFM instrument (NTEGRA Spectra, Russia) using tapping mode. The samples were deposited onto clean Si substrates and dried at 60 °C. UV–vis
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2018

Nanocomposites comprised of homogeneously dispersed magnetic iron-oxide nanoparticles and poly(methyl methacrylate)

  • Sašo Gyergyek,
  • David Pahovnik,
  • Ema Žagar,
  • Alenka Mertelj,
  • Rok Kostanjšek,
  • Miloš Beković,
  • Marko Jagodič,
  • Heinrich Hofmann and
  • Darko Makovec

Beilstein J. Nanotechnol. 2018, 9, 1613–1622, doi:10.3762/bjnano.9.153

Graphical Abstract
  • magnetization curves of the nanoparticles were measured with a Lake Shore 7307 vibrating-sample magnetometer (VSM). The temperature dependency of the magnetic susceptibility under zero-field-cooling (ZFC) conditions was measured with a Quantum Design MPMS superconducting quantum interference device (SQUID). The
PDF
Album
Supp Info
Full Research Paper
Published 01 Jun 2018

Single-crystalline FeCo nanoparticle-filled carbon nanotubes: synthesis, structural characterization and magnetic properties

  • Rasha Ghunaim,
  • Maik Scholz,
  • Christine Damm,
  • Bernd Rellinghaus,
  • Rüdiger Klingeler,
  • Bernd Büchner,
  • Michael Mertig and
  • Silke Hampel

Beilstein J. Nanotechnol. 2018, 9, 1024–1034, doi:10.3762/bjnano.9.95

Graphical Abstract
  • of the filling particles, and therefore, the magnetic properties. The samples were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), superconducting quantum interference device (SQUID) and thermogravimetric analysis (TGA). The Fe–Co
  • superconducting quantum interference device (MPMS-XL SQUID) magnetometer from Quantum Design (San Diego CA, USA). The samples were filled inside gelatin capsules, and the diamagnetic contribution of the sample holder and the empty CNT was subtracted. Results and Discussion Morphology and structure The morphology
PDF
Album
Supp Info
Full Research Paper
Published 29 Mar 2018

Enzymatically promoted release of organic molecules linked to magnetic nanoparticles

  • Chiara Lambruschini,
  • Silvia Villa,
  • Luca Banfi,
  • Fabio Canepa,
  • Fabio Morana,
  • Annalisa Relini,
  • Paola Riani,
  • Renata Riva and
  • Fulvio Silvetti

Beilstein J. Nanotechnol. 2018, 9, 986–999, doi:10.3762/bjnano.9.92

Graphical Abstract
  • -superconducting quantum interference device (SQUID) magnetometer (Magnetic Properties Measurement System, Quantum Design) with resolution better than 10−7 emu. The room temperature magnetic hysteresis cycles were obtained in the 0–5 Tesla μ0H magnetic field range. DLS measurements were performed using a Zetasizer
PDF
Album
Supp Info
Full Research Paper
Published 27 Mar 2018

Anchoring Fe3O4 nanoparticles in a reduced graphene oxide aerogel matrix via polydopamine coating

  • Błażej Scheibe,
  • Radosław Mrówczyński,
  • Natalia Michalak,
  • Karol Załęski,
  • Michał Matczak,
  • Mateusz Kempiński,
  • Zuzanna Pietralik,
  • Mikołaj Lewandowski,
  • Stefan Jurga and
  • Feliks Stobiecki

Beilstein J. Nanotechnol. 2018, 9, 591–601, doi:10.3762/bjnano.9.55

Graphical Abstract
  • Limited). The magnetic properties of Fe3O4-containing samples were studies using MPMS-XL SQUID magnetometer (Quantum Design) by performing susceptibility and magnetization reversal measurements. Zero- (ZFC) and field-cooled (FC) susceptibility curves were obtained at 100 Oe with temperature varying from 2
PDF
Album
Supp Info
Full Research Paper
Published 15 Feb 2018

Beyond Moore’s technologies: operation principles of a superconductor alternative

  • Igor I. Soloviev,
  • Nikolay V. Klenov,
  • Sergey V. Bakurskiy,
  • Mikhail Yu. Kupriyanov,
  • Alexander L. Gudkov and
  • Anatoli S. Sidorenko

Beilstein J. Nanotechnol. 2017, 8, 2689–2710, doi:10.3762/bjnano.8.269

Graphical Abstract
  • Systems. The second part of the review is devoted to cryogenic memory. Four approaches are described: SQUID-based memory, hybrid Josephson–CMOS memory, Josephson magnetic random access memory (JMRAM), and orthogonal spin transfer magnetic random access memory (OST-MRAM). They are presented in historical
  • logic, see Figure 5. This replacement is somewhat analogous to the one that was done for resistors connecting SQUID cells in the very first RSFQ circuits. It provides the possibility for the circuits to be in a purely superconducting state. The main difficulty in the elimination of bias resistors is the
  • adiabatic by adjusting the shape of the driving current pulse Ie. Cross-coupling of the cells enables adiabatic reversible logic operations [55]. The single Josephson junction of parametric quantron is substituted by a SQUID (see right-hand side of Figure 10) in practical implementations [56]. Here, the
PDF
Album
Review
Published 14 Dec 2017

Alternating current magnetic susceptibility of a ferronematic

  • Natália Tomašovičová,
  • Jozef Kováč,
  • Veronika Gdovinová,
  • Nándor Éber,
  • Tibor Tóth-Katona,
  • Jan Jadżyn and
  • Peter Kopčanský

Beilstein J. Nanotechnol. 2017, 8, 2515–2520, doi:10.3762/bjnano.8.251

Graphical Abstract
  • properties were measured with a SQUID magnetometer (Quantum Design MPMS 5XL) [30] in a magnetic field directed along the cylindrical axis of the capsules. Figure 1 shows the magnetization curve of the powder of MNPs obtained by evaporating the chloroform, measured at 285 K. This figure proves that the
PDF
Album
Full Research Paper
Published 27 Nov 2017

Near-infrared-responsive, superparamagnetic Au@Co nanochains

  • Varadee Vittur,
  • Arati G. Kolhatkar,
  • Shreya Shah,
  • Irene Rusakova,
  • Dmitri Litvinov and
  • T. Randall Lee

Beilstein J. Nanotechnol. 2017, 8, 1680–1687, doi:10.3762/bjnano.8.168

Graphical Abstract
  • ], and our Au@Co nanochains help to fill in this need. Magnetic properties of the Au@Co nanochains In addition to their NIR extinction, our dual-functionality Au@Co nanochains possess magnetic properties, which were evaluated using a superconducting quantum interference device (SQUID) magnetometer. The
  • SQUID magnetometer with fields up to 5 T. The temperature-dependent magnetization curves varying between 5 and 400 K were measured in an applied magnetic field of 100 Oe. SEM images of the Au@Co nanochains at (a) low magnification and (b) high magnification. TEM images of the Au@Co nanochains: (a,b) low
PDF
Album
Full Research Paper
Published 14 Aug 2017

Formation of ferromagnetic molecular thin films from blends by annealing

  • Peter Robaschik,
  • Ye Ma,
  • Salahud Din and
  • Sandrine Heutz

Beilstein J. Nanotechnol. 2017, 8, 1469–1475, doi:10.3762/bjnano.8.146

Graphical Abstract
  • information about the chemical composition and structure of the films. Furthermore superconducting quantum interference device (SQUID) magnetometry measurements reveal the ferromagnetic behaviour of the β-MnPc films, which exhibit remarkable coercivity. The opening of the hysteresis loop is preserved at
  • investigated in transmission mode utilising a Nicolet iS10 FTIR spectrometer from Thermo Scientific with an optimised spectral range of 7800–350 cm−1 and a resolution of 0.4 cm−1. The magnetic measurements were conducted with a Quantum Design MPMS-7 SQUID (superconducting quantum interference device
  • ) magnetometer. The films were deposited with a stripe shadow mask (4 × 90 mm2) on flexible Kapton foil and rolled into a tube as reported by Heutz et al. [28]. Therefore the size of the Kapton foil was chosen to be larger than the scanning length of the coils in the SQUID to compensate for any background
PDF
Album
Full Research Paper
Published 14 Jul 2017

Deposition of exchange-coupled dinickel complexes on gold substrates utilizing ambidentate mercapto-carboxylato ligands

  • Martin Börner,
  • Laura Blömer,
  • Marcus Kischel,
  • Peter Richter,
  • Georgeta Salvan,
  • Dietrich R. T. Zahn,
  • Pablo F. Siles,
  • Maria E. N. Fuentes,
  • Carlos C. B. Bufon,
  • Daniel Grimm,
  • Oliver G. Schmidt,
  • Daniel Breite,
  • Bernd Abel and
  • Berthold Kersting

Beilstein J. Nanotechnol. 2017, 8, 1375–1387, doi:10.3762/bjnano.8.139

Graphical Abstract
  • recorded on a Bruker Daltronics ESQUIRE3000 PLUS spectrometer. Temperature-dependent magnetic susceptibility measurements on powdered solid samples were carried out using a MPMS 7XL SQUID magnetometer (Quantum Design) over a temperature range 2–330 K at an applied magnetic field of 0.1, 0.5, and 1.0 Tesla
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2017

Synthesis of [Fe(Leq)(Lax)]n coordination polymer nanoparticles using blockcopolymer micelles

  • Christoph Göbel,
  • Ottokar Klimm,
  • Florian Puchtler,
  • Sabine Rosenfeldt,
  • Stephan Förster and
  • Birgit Weber

Beilstein J. Nanotechnol. 2017, 8, 1318–1327, doi:10.3762/bjnano.8.133

Graphical Abstract
  • : Transmission infrared spectra were collected using a Perkin Elmer Spectrum 100 FTIR (ATR). The samples were measured directly as solids. Magnetic measurements: Magnetic susceptibility measurements were performed with a Quantum Design MPMS-XL-5 SQUID magnetometer. Field strength of 3 T was applied and a
PDF
Album
Supp Info
Full Research Paper
Published 26 Jun 2017

Probing the magnetic superexchange couplings between terminal CuII ions in heterotrinuclear bis(oxamidato) type complexes

  • Mohammad A. Abdulmalic,
  • Saddam Weheabby,
  • Francois E. Meva,
  • Azar Aliabadi,
  • Vladislav Kataev,
  • Bernd Büchner,
  • Frederik Schleife,
  • Berthold Kersting and
  • Tobias Rüffer

Beilstein J. Nanotechnol. 2017, 8, 789–800, doi:10.3762/bjnano.8.82

Graphical Abstract
  • 1112 series. The mononuclear NiII-containing complexes [n-Bu4N]2[Ni(opboR2)] (R = Me, Et, n-Pr) were synthesized according to the literature [15]. Static magnetization measurements at T = 1.8 K and in magnetic fields µ0H up to 7 T were carried out with a 7 T VSM-SQUID magnetometer from Quantum Design
PDF
Album
Supp Info
Full Research Paper
Published 06 Apr 2017

Formation and shape-control of hierarchical cobalt nanostructures using quaternary ammonium salts in aqueous media

  • Ruchi Deshmukh,
  • Anurag Mehra and
  • Rochish Thaokar

Beilstein J. Nanotechnol. 2017, 8, 494–505, doi:10.3762/bjnano.8.53

Graphical Abstract
  • Instrument Facility (SAIF), HRTEM and FEGSEM facility provided by Department of Chemical Engineering, SQUID facility provided by Industrial Research and Consultancy Center (IRCC), and X-ray diffraction facility at Department of Metallurgical Engineering and Material Science (MEMS) of IIT Bombay, Mumbai.
PDF
Album
Supp Info
Full Research Paper
Published 23 Feb 2017

Grazing-incidence optical magnetic recording with super-resolution

  • Gunther Scheunert,
  • Sidney. R. Cohen,
  • René Kullock,
  • Ryan McCarron,
  • Katya Rechev,
  • Ifat Kaplan-Ashiri,
  • Ora Bitton,
  • Paul Dawson,
  • Bert Hecht and
  • Dan Oron

Beilstein J. Nanotechnol. 2017, 8, 28–37, doi:10.3762/bjnano.8.4

Graphical Abstract
  • Figure 2a, although the actual layer structure is much more complex, e.g., the recording layer consists of SiO2-embedded CoCrPt grains, the seed layer stack contains multiple layers, and the soft underlayer consists of a Fe-rich alloy. Superconducting quantum interference device (SQUID) magnetometry was
  • layer: depending on their size, the grains have different thermal stability and therefore switch the magnetization direction at different temperatures. The SQUID measurement can only give a coercivity value averaged over all grains, neglecting local variations. Zero-field-cooled (ZFC) thermo
  • (University of Würzburg). Further, we would like to thank T. Adler and his colleagues at LOT Germany for magnetic characterization of the samples by SQUID magnetometry. PD and RMcC acknowledge support from US-Ireland Partnership R&D Project USI 043 and EPSRC grant EP/1038411/1. GS and DO acknowledge support
PDF
Album
Full Research Paper
Published 04 Jan 2017

Ferromagnetic behaviour of ZnO: the role of grain boundaries

  • Boris B. Straumal,
  • Svetlana G. Protasova,
  • Andrei A. Mazilkin,
  • Eberhard Goering,
  • Gisela Schütz,
  • Petr B. Straumal and
  • Brigitte Baretzky

Beilstein J. Nanotechnol. 2016, 7, 1936–1947, doi:10.3762/bjnano.7.185

Graphical Abstract
  • SQUID interferometer (Quantum Design MPMS-7 and MPMS-XL) in the external magnetic field applied parallel to the sample plane. The diamagnetic signal from a sample holder and a substrate was accurately subtracted from the magnetization curves. In Figure 3 the magnetization curves are plotted for pure ZnO
PDF
Album
Review
Published 07 Dec 2016

Cubic chemically ordered FeRh and FeCo nanomagnets prepared by mass-selected low-energy cluster-beam deposition: a comparative study

  • Veronique Dupuis,
  • Anthony Robert,
  • Arnaud Hillion,
  • Ghassan Khadra,
  • Nils Blanc,
  • Damien Le Roy,
  • Florent Tournus,
  • Clement Albin,
  • Olivier Boisron and
  • Alexandre Tamion

Beilstein J. Nanotechnol. 2016, 7, 1850–1860, doi:10.3762/bjnano.7.177

Graphical Abstract
  • behaviour of our nanoalloys. Magnetic characterization First, the magnetic properties of Fe-based clusters embedded in a carbon matrix have been studied by superconducting quantum interference device (SQUID) magnetometry experiments and simulations [4][19][20][21]. As illustrated in Figure 8a, the zero
  • sample at both edges (Figure 10 and Figure 11). In the following section, we discuss the main results concerning the magnetic behaviour of the different samples. Notice that the MAE is mainly determined by semi-analytical models of all the SQUID magnetizations curves and that the spin and angular
  • from the french Synchrotron SOLEIL on the DEIMOS beamline for their respective investment in FeRh and FeCo XMCD measurements. Support is acknowledged from both GDR CNRS 3182 and COST-STSM-MP0903 on Nanoalloys. All cluster samples were prepared in the PLYRA platform while SQUID measurements were
PDF
Album
Full Research Paper
Published 28 Nov 2016

Thickness-modulated tungsten–carbon superconducting nanostructures grown by focused ion beam induced deposition for vortex pinning up to high magnetic fields

  • Ismael García Serrano,
  • Javier Sesé,
  • Isabel Guillamón,
  • Hermann Suderow,
  • Sebastián Vieira,
  • Manuel Ricardo Ibarra and
  • José María De Teresa

Beilstein J. Nanotechnol. 2016, 7, 1698–1708, doi:10.3762/bjnano.7.162

Graphical Abstract
  • pinning potentials suitable for Josephson junctions [19] and nano-SQUID devices [54] operating in large field and temperature ranges. Experimental Samples with five different periodicity values of the thickness modulation (60, 80, 100, 120 and 140 nm) and one additional flat sample without modulation were
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2016

Antitumor magnetic hyperthermia induced by RGD-functionalized Fe3O4 nanoparticles, in an experimental model of colorectal liver metastases

  • Oihane K. Arriortua,
  • Eneko Garaio,
  • Borja Herrero de la Parte,
  • Maite Insausti,
  • Luis Lezama,
  • Fernando Plazaola,
  • Jose Angel García,
  • Jesús M. Aizpurua,
  • Maialen Sagartzazu,
  • Mireia Irazola,
  • Nestor Etxebarria,
  • Ignacio García-Alonso,
  • Alberto Saiz-López and
  • José Javier Echevarria-Uraga

Beilstein J. Nanotechnol. 2016, 7, 1532–1542, doi:10.3762/bjnano.7.147

Graphical Abstract
  • collected on a FTIR-8400S Shimadzu spectrometer in the range of 4000–400 cm−1. The measurements of magnetization versus temperature at 10 Oe were carried out at 5 and 300 K using a Quantum Design MPMS-7 SQUID magnetometer. The hysteresis loops at room temperature were collected in a homemade VSM
PDF
Album
Supp Info
Full Research Paper
Published 28 Oct 2016

Adiabatic superconducting cells for ultra-low-power artificial neural networks

  • Andrey E. Schegolev,
  • Nikolay V. Klenov,
  • Igor I. Soloviev and
  • Maxim V. Tereshonok

Beilstein J. Nanotechnol. 2016, 7, 1397–1403, doi:10.3762/bjnano.7.130

Graphical Abstract
  • ], those for signal classification and recognition are less developed. A solution for the recognition problem by employing perceptron ANNs was sought in earlier works with SQUID-based neuron switching [14][15] in the resistive state. In subsequent variations [16][17], this feature was found to drastically
  • (two or three) Josephson junctions. This presents a distinct opportunity for the development of energy efficient, high density, fast superconducting ANNs for cognitive receiving systems. It was shown that a Josephson structure (e.g., a bi-SQUID or a SQIF) transfer function can be precisely designed by
  • combining basic SQUID cells with known characteristics [25][26][27][28]. In this letter we describe designs for superconducting neurons with sigmoid- and Gaussian-like shapes for the activation functions inspired by these works. Being based on a simple parametric quantron cell, our neurons allow an ANN to
PDF
Album
Letter
Published 05 Oct 2016

Microwave synthesis of high-quality and uniform 4 nm ZnFe2O4 nanocrystals for application in energy storage and nanomagnetics

  • Christian Suchomski,
  • Ben Breitung,
  • Ralf Witte,
  • Michael Knapp,
  • Sondes Bauer,
  • Tilo Baumbach,
  • Christian Reitz and
  • Torsten Brezesinski

Beilstein J. Nanotechnol. 2016, 7, 1350–1360, doi:10.3762/bjnano.7.126

Graphical Abstract
  • ), which is accompanied by the reduction of Fe3+ to Fe2+. The magnetic properties were thoroughly investigated by both direct-current (DC) and alternating-current (AC) superconducting quantum interference device (SQUID) magnetometry. Zero-field-cooled (ZFC) and field-cooled (FC) curves obtained on the as
  • temperature Tf ≈ 22 K. Figure 7a–c shows results from field-dependent SQUID magnetometry. The M(H) curve measured at 5 K (Figure 7a,b) indicates ferrimagnetic behavior with a coercive field HC ≈ 12 mT. As evident, the magnetization is not completely saturated. Similar observations have been made for other
  • lines are the sum of the peak fits. Low-temperature Mössbauer data of as-prepared ZFO nanoparticles. The gray spectrum represents Fe3+ on tetrahedral sites, while the blue spectra correspond to Fe3+ residing on octahedral sites. The red line is the sum of the different sub-spectra. Direct-current SQUID
PDF
Album
Supp Info
Full Research Paper
Published 27 Sep 2016

Multiwalled carbon nanotube hybrids as MRI contrast agents

  • Nikodem Kuźnik and
  • Mateusz M. Tomczyk

Beilstein J. Nanotechnol. 2016, 7, 1086–1103, doi:10.3762/bjnano.7.102

Graphical Abstract
  • presence of oleic acid [37]. All of these approaches led to the formation of iron oxides with superparamagnetic properties, as determined by superconducting quantum interference device (SQUID) measurements. Only in a few cases was the real composition proven by X-ray techniques. Nevertheless, these
  • magnetic character of MWCNTs originates from residual metal nanoparticles incorporated during the synthesis. It is further altered by intentional introduction of other magnetic species such as SPIO. The magnetic properties are determined by the superconducting quantum interference (SQUID) technique
PDF
Album
Supp Info
Review
Published 27 Jul 2016

Phenalenyl-based mononuclear dysprosium complexes

  • Yanhua Lan,
  • Andrea Magri,
  • Olaf Fuhr and
  • Mario Ruben

Beilstein J. Nanotechnol. 2016, 7, 995–1009, doi:10.3762/bjnano.7.92

Graphical Abstract
  • . Crystallographic data are summarized in Table S1 (Supporting Information File 1). Magnetic studies Magnetic measurements were obtained with a Quantum Design SQUID magnetometer MPMS-XL. Direct current (dc) susceptibility measurements were carried out over the temperature range of 1.8–300 K under an applied dc field
PDF
Album
Supp Info
Full Research Paper
Published 08 Jul 2016

Synthesis of cobalt nanowires in aqueous solution under an external magnetic field

  • Xiaoyu Li,
  • Lijuan Sun,
  • Hu Wang,
  • Kenan Xie,
  • Qin Long,
  • Xuefei Lai and
  • Li Liao

Beilstein J. Nanotechnol. 2016, 7, 990–994, doi:10.3762/bjnano.7.91

Graphical Abstract
  • superconducting quantum interference device (Quantum Design, Inc., MPMS SQUID XL) at room temperature using an applied field of up to 2.5 T. Figure 1a,b show SEM images of cobalt nanowires prepared with PVP in aqueous solution under an external magnetic field. Uniform linear cobalt nanowires with a mean diameter
PDF
Album
Letter
Published 07 Jul 2016
Other Beilstein-Institut Open Science Activities