Search results

Search for "ablation" in Full Text gives 104 result(s) in Beilstein Journal of Nanotechnology.

Nanostructured and oriented metal–organic framework films enabling extreme surface wetting properties

  • Andre Mähringer,
  • Julian M. Rotter and
  • Dana D. Medina

Beilstein J. Nanotechnol. 2019, 10, 1994–2003, doi:10.3762/bjnano.10.196

Graphical Abstract
  • example, sol–gel synthesis, electrochemical deposition, anodization, electrochemical polymerization, electrospinning, plasma treatment, chemical or hydrothermal methods, vapor deposition, layer-by-layer assembly or laser ablation [19][27][28][29][30][31][32][33][34][35][36][37][38][39]. However, the
PDF
Album
Supp Info
Full Research Paper
Published 09 Oct 2019

Pulsed laser synthesis of highly active Ag–Rh and Ag–Pt antenna–reactor-type plasmonic catalysts

  • Kenneth A. Kane and
  • Massimo F. Bertino

Beilstein J. Nanotechnol. 2019, 10, 1958–1963, doi:10.3762/bjnano.10.192

Graphical Abstract
  • Kenneth A. Kane Massimo F. Bertino Department of Physics, Virginia Commonwealth University, Richmond, Virginia, 23220, USA 10.3762/bjnano.10.192 Abstract Ag, Pt, and Rh monometallic colloids were produced via laser ablation. Separate Ag–Rh and Ag–Pt heterostructures were formed by mixing and
  • –reactor; catalysis; heterostructures; laser ablation; multicomponent; nanoparticles; 4-nitrophenol; plasmonic; Pt; Rh; Introduction Metal nanoparticles can interact with visible light through an excitation of the localized surface plasmon resonance (LSPR). The LSPR is a resonant, collective oscillation
  • a “forced plasmon” that efficiently generates hot charge carriers, transforming the catalytic NP into a photocatalytic NP. Here, the facile synthesis of highly active Ag–Rh and Ag–Pt heterostructures for the reduction of 4-nitrophenol through pulsed laser ablation is reported. The synthesis method
PDF
Album
Supp Info
Letter
Published 26 Sep 2019

Gas sensing properties of individual SnO2 nanowires and SnO2 sol–gel nanocomposites

  • Alexey V. Shaposhnik,
  • Dmitry A. Shaposhnik,
  • Sergey Yu. Turishchev,
  • Olga A. Chuvenkova,
  • Stanislav V. Ryabtsev,
  • Alexey A. Vasiliev,
  • Xavier Vilanova,
  • Francisco Hernandez-Ramirez and
  • Joan R. Morante

Beilstein J. Nanotechnol. 2019, 10, 1380–1390, doi:10.3762/bjnano.10.136

Graphical Abstract
  • and high surface-to-volume ratio, obtained by sintering, are traditionally used as sensing materials. By means of preparation methods such as magnetron sputtering, laser ablation, and pulverization, layer-by-layer nanoparticle deposition can be achieved with adhesion to the substrate and to previously
PDF
Album
Full Research Paper
Published 08 Jul 2019
Graphical Abstract
  • plasmonic nanoparticles dispersed on a substrate [38], inside microcavities [39], or even while monitoring electrochemical reactions [40]. This work reports on the study of SERS tags obtained by laser ablation synthesis in liquid solution (LASiS) of gold (Au) nanoparticles, their coating with three
PDF
Album
Supp Info
Full Research Paper
Published 10 May 2019

Fabrication of silver nanoisland films by pulsed laser deposition for surface-enhanced Raman spectroscopy

  • Bogusław Budner,
  • Mariusz Kuźma,
  • Barbara Nasiłowska,
  • Bartosz Bartosewicz,
  • Malwina Liszewska and
  • Bartłomiej J. Jankiewicz

Beilstein J. Nanotechnol. 2019, 10, 882–893, doi:10.3762/bjnano.10.89

Graphical Abstract
  • nanoparticle films [12][13][14]. Metallic NPs of different sizes and shapes are prepared in solution mainly by chemical synthesis using various reducing agents and conditions [13]. However, physical methods such as laser ablation are also often used [15]. Other examples of nanoparticle fabrication using
  • fabricated NPs can be controlled very well [13]. One of the less commonly used physical methods for the fabrication of SERS active gold and silver nanoisland films is pulsed laser deposition (PLD) [19][20][21][22][23][24][25]. In PLD, the materials are deposited on a substrate through laser ablation from a
  • the Si substrate by laser ablation (PLD) registered in a wide range of binding energy, and Ag 3d and Ag-MNN Auger band registered in a narrow range of energy (insert). Reflectance spectra of fabricated Ag nanoisland films: a) for samples with the layers deposited at a laser fluence of 5.56 ± 0.37J/cm2
PDF
Album
Supp Info
Full Research Paper
Published 16 Apr 2019

Tungsten disulfide-based nanocomposites for photothermal therapy

  • Tzuriel Levin,
  • Hagit Sade,
  • Rina Ben-Shabbat Binyamini,
  • Maayan Pour,
  • Iftach Nachman and
  • Jean-Paul Lellouche

Beilstein J. Nanotechnol. 2019, 10, 811–822, doi:10.3762/bjnano.10.81

Graphical Abstract
  • carbon equivalent and found the toxicity of the former to be lower [23]. Wu et al. produced biocompatible MoS2 nanoparticles by a pulsed laser ablation technique [24]. Examples of medical applications with TMDC nanostructures are their addition as reinforcing agents to polymers for bone-tissue
PDF
Album
Supp Info
Full Research Paper
Published 02 Apr 2019

Polydopamine-coated Au nanorods for targeted fluorescent cell imaging and photothermal therapy

  • Boris N. Khlebtsov,
  • Andrey M. Burov,
  • Timofey E. Pylaev and
  • Nikolai G. Khlebtsov

Beilstein J. Nanotechnol. 2019, 10, 794–803, doi:10.3762/bjnano.10.79

Graphical Abstract
  • , the cultural medium containing unbound nanoparticles was removed and fresh DMEM was added to each well. The cells were irradiated with 808 nm laser light to initiate photothermal ablation (Figure 4A). The laser-treated cells were further stained with fluorescein diacetate and propidium iodide (FDA/PI
  • concentration and a laser power density of 2 W/cm2, the in vitro photothermal ablation was further studied as a function of the irradiation time (Figure 4F). As the irradiation time was increased from 60 to 300 s, the relative cell viability gradually decreased for both nanoparticles samples (Figure 1E
  • ). Obviously, the effect of folate-targeted photothermal ablation is higher. For example, at a concentration of 2.5 × 1010 mL−1, a power density of 2 W/cm2, and an irradiation time of 300 s, the cell viability was lower than 10% when the folate-targeted nanocomposite was applied. In comparison, the cell
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2019

Study of silica-based intrinsically emitting nanoparticles produced by an excimer laser

  • Imène Reghioua,
  • Mattia Fanetti,
  • Sylvain Girard,
  • Diego Di Francesca,
  • Simonpietro Agnello,
  • Layla Martin-Samos,
  • Marco Cannas,
  • Matjaz Valant,
  • Melanie Raine,
  • Marc Gaillardin,
  • Nicolas Richard,
  • Philippe Paillet,
  • Aziz Boukenter,
  • Youcef Ouerdane and
  • Antonino Alessi

Beilstein J. Nanotechnol. 2019, 10, 211–221, doi:10.3762/bjnano.10.19

Graphical Abstract
  • , F-91297 Arpajon, France 10.3762/bjnano.10.19 Abstract We report an experimental study demonstrating the feasibility to produce both pure and Ge-doped silica nanoparticles (size ranging from tens up to hundreds of nanometers) using nanosecond pulsed KrF laser ablation of bulk glass. In particular
  • of a few nanometers. Keywords: Ge-doped; laser ablation; nanomaterials; optical materials; silica; Introduction In material science, laser–matter interaction encompasses not only the study of basic mechanisms but also material machining/engineering. Such emphasis is partially related to the
  • the sample surface for laser pulses longer than 50 ps and to ablation for pulses with duration shorter than 10 ps [20]. In both cases, the production of nanoparticles was not investigated. In general, the ablation can take place in different ways such as explosion, evaporation, spallation or
PDF
Album
Full Research Paper
Published 16 Jan 2019

A comparison of tarsal morphology and traction force in the two burying beetles Nicrophorus nepalensis and Nicrophorus vespilloides (Coleoptera, Silphidae)

  • Liesa Schnee,
  • Benjamin Sampalla,
  • Josef K. Müller and
  • Oliver Betz

Beilstein J. Nanotechnol. 2019, 10, 47–61, doi:10.3762/bjnano.10.5

Graphical Abstract
  • after claw ablation is detectable on rough surfaces, but not on smooth or micro-rough surfaces [6][16][28]. N. nepalensis beetles showed a slight reduction in attachment force (although not always significant) on smooth and micro-rough surfaces after claw removal. While accidental cuts of the
PDF
Album
Full Research Paper
Published 04 Jan 2019

Femtosecond laser-assisted fabrication of chalcopyrite micro-concentrator photovoltaics

  • Franziska Ringleb,
  • Stefan Andree,
  • Berit Heidmann,
  • Jörn Bonse,
  • Katharina Eylers,
  • Owen Ernst,
  • Torsten Boeck,
  • Martina Schmid and
  • Jörg Krüger

Beilstein J. Nanotechnol. 2018, 9, 3025–3038, doi:10.3762/bjnano.9.281

Graphical Abstract
  • glass/molybdenum substrate surface, such as depicted in Figure 6, left column, provides the best results. Here, an indium island with a height of 2.6 µm and a diameter of 45 µm has grown on the glass/molybdenum substrate (Figure 6, left column, middle) on a laser-induced ablation spot in glass (Figure 6
  • 3.03 J/cm2 (right). Scanning electron micrographs of laser-induced modifications on glass. Laser parameters: F = 1.63 J/cm2, N = 100 (a); 1.83 J/cm2, N = 30 (b). SEM tilting angle 0° (a), 52° (b). Scanning electron micrographs of individual laser-generated ablation spots on glass (top row) and
PDF
Album
Review
Published 12 Dec 2018

Charged particle single nanometre manufacturing

  • Philip D. Prewett,
  • Cornelis W. Hagen,
  • Claudia Lenk,
  • Steve Lenk,
  • Marcus Kaestner,
  • Tzvetan Ivanov,
  • Ahmad Ahmad,
  • Ivo W. Rangelow,
  • Xiaoqing Shi,
  • Stuart A. Boden,
  • Alex P. G. Robinson,
  • Dongxu Yang,
  • Sangeetha Hari,
  • Marijke Scotuzzi and
  • Ejaz Huq

Beilstein J. Nanotechnol. 2018, 9, 2855–2882, doi:10.3762/bjnano.9.266

Graphical Abstract
PDF
Album
Review
Published 14 Nov 2018

Biomimetic surface structures in steel fabricated with femtosecond laser pulses: influence of laser rescanning on morphology and wettability

  • Camilo Florian Baron,
  • Alexandros Mimidis,
  • Daniel Puerto,
  • Evangelos Skoulas,
  • Emmanuel Stratakis,
  • Javier Solis and
  • Jan Siegel

Beilstein J. Nanotechnol. 2018, 9, 2802–2812, doi:10.3762/bjnano.9.262

Graphical Abstract
  • material by a variety of processes, including local ablation [17], amorphization [18], convection [19] and others. The type of structures that are formed is diverse and depends on the irradiation parameters, the most common ones being the so-called ripples (parallel lines with a period near the laser
  • distribution that leads to ablation changes strongly between scans. Moreover, for a constant total number of pulses and processing time [25], the thermal heating of the sample during a single scan is much larger compared to multiple rescans, for which the sample has time to cool between scans. We have
  • structures appear, although at a much larger spatial scale, approximately five times wider. These cone structures also bear similarities to those reported in [27] and their formation is most likely also influenced by reduced ablation of the cones, formed at imperfections. As can be seen in Figure 2B, the
PDF
Album
Supp Info
Full Research Paper
Published 05 Nov 2018

Comparative biological effects of spherical noble metal nanoparticles (Rh, Pd, Ag, Pt, Au) with 4–8 nm diameter

  • Alexander Rostek,
  • Marina Breisch,
  • Kevin Pappert,
  • Kateryna Loza,
  • Marc Heggen,
  • Manfred Köller,
  • Christina Sengstock and
  • Matthias Epple

Beilstein J. Nanotechnol. 2018, 9, 2763–2774, doi:10.3762/bjnano.9.258

Graphical Abstract
  • ablation have also gained increasing importance in the last decade [60]. Rhodium nanoparticles can be prepared by reduction in the presence of suitable capping agents. The manipulation of the reaction kinetics by variation of synthesis parameters such as temperature and concentration leads to nanoparticles
PDF
Album
Full Research Paper
Published 29 Oct 2018

Enhancement of X-ray emission from nanocolloidal gold suspensions under double-pulse excitation

  • Wei-Hung Hsu,
  • Frances Camille P. Masim,
  • Armandas Balčytis,
  • Hsin-Hui Huang,
  • Tetsu Yonezawa,
  • Aleksandr A. Kuchmizhak,
  • Saulius Juodkazis and
  • Koji Hatanaka

Beilstein J. Nanotechnol. 2018, 9, 2609–2617, doi:10.3762/bjnano.9.242

Graphical Abstract
  • ablation [6]. In practical applications for X-ray diffraction [7] and X-ray absorption fine structure (XAFS) measurements [8][9], or further nonlinear X-ray processes, a high flux of X-ray pulses is indispensable. X-ray intensity enhancements can be expected through an effective increase of the laser
  • enhancement in X-ray intensity from a water film was observed under double-pulse excitation with a pre-pulse ahead of the main pulse [26][27]. The pre-pulse irradiation with relatively low intensity induces a time-dependent laser-induced plasma (in the range of picoseconds) and ablation (in the range of
  • be calculated from the consideration that all absorbed energy density is converted to thermal energy of electrons. It can be calculated from the ablation threshold expression of a dielectric [37]: where ls = c/(κω) is the skin depth related to the imaginary part of the refractive index , c is the
PDF
Album
Full Research Paper
Published 01 Oct 2018

SERS active Ag–SiO2 nanoparticles obtained by laser ablation of silver in colloidal silica

  • Cristina Gellini,
  • Francesco Muniz-Miranda,
  • Alfonso Pedone and
  • Maurizio Muniz-Miranda

Beilstein J. Nanotechnol. 2018, 9, 2396–2404, doi:10.3762/bjnano.9.224

Graphical Abstract
  • , 41125 Modena, Italy Center for Molecular Modeling, Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium 10.3762/bjnano.9.224 Abstract Highly stable Ag–SiO2 nanoparticle composites were first obtained by laser ablation of a silver target in an aqueous colloidal dispersion of silica and
  • computational DFT approach provided evidence of ligand adsorption on positively charged adatoms of the silver nanostructured surface, in a very similar way to the metal/molecule interaction occurring in the corresponding Ag(I) coordination compound. Keywords: 2,2’-bipyridine; DFT; laser ablation; silica
  • of the present work is to apply laser ablation to the fabrication of new materials for surface enhanced Raman scattering (SERS) [15][16], focusing on silver and silica nanoparticles in aqueous suspension. This research was undertaken for three main reasons. The first is that silver nanoparticles that
PDF
Album
Supp Info
Full Research Paper
Published 06 Sep 2018

Optical near-field mapping of plasmonic nanostructures prepared by nanosphere lithography

  • Gitanjali Kolhatkar,
  • Alexandre Merlen,
  • Jiawei Zhang,
  • Chahinez Dab,
  • Gregory Q. Wallace,
  • François Lagugné-Labarthet and
  • Andreas Ruediger

Beilstein J. Nanotechnol. 2018, 9, 1536–1543, doi:10.3762/bjnano.9.144

Graphical Abstract
  • clearly visible, demonstrating the potential of our technique. Other methods were previously used to characterize the hot spots on plasmonic nanotriangles. They can be compared with our approach. One technique consists in irradiating the samples with short laser pulses to achieve plasmon-mediated ablation
PDF
Album
Full Research Paper
Published 23 May 2018

Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations

  • Jaison Jeevanandam,
  • Ahmed Barhoum,
  • Yen S. Chan,
  • Alain Dufresne and
  • Michael K. Danquah

Beilstein J. Nanotechnol. 2018, 9, 1050–1074, doi:10.3762/bjnano.9.98

Graphical Abstract
  • morphologies such as hollow tubes, ellipsoids or spheres. Fullerenes (C60), carbon nanotubes (CNTs), carbon nanofibers, carbon black, graphene (Gr), and carbon onions are included under the carbon-based NMs category. Laser ablation, arc discharge, and chemical vapor deposition (CVD) are the important
PDF
Album
Review
Published 03 Apr 2018

Review: Electrostatically actuated nanobeam-based nanoelectromechanical switches – materials solutions and operational conditions

  • Liga Jasulaneca,
  • Jelena Kosmaca,
  • Raimonds Meija,
  • Jana Andzane and
  • Donats Erts

Beilstein J. Nanotechnol. 2018, 9, 271–300, doi:10.3762/bjnano.9.29

Graphical Abstract
PDF
Album
Review
Published 25 Jan 2018

The role of ligands in coinage-metal nanoparticles for electronics

  • Ioannis Kanelidis and
  • Tobias Kraus

Beilstein J. Nanotechnol. 2017, 8, 2625–2639, doi:10.3762/bjnano.8.263

Graphical Abstract
  • to twelve times higher than in the unfilled polymer (Figure 8) [141]. Semaltianos et al. prepared ligand-free silver nanoparticles in deionized water by laser ablation. Their colloidal solution was mixed with the polymer mixture PEDOT:PSS, which coated the metal surface. The sulfur atom of the
PDF
Album
Review
Published 07 Dec 2017

Laser-assisted fabrication of gold nanoparticle-composed structures embedded in borosilicate glass

  • Nikolay Nedyalkov,
  • Mihaela Koleva,
  • Nadya Stankova,
  • Rosen Nikov,
  • Mitsuhiro Terakawa,
  • Yasutaka Nakajima,
  • Lyubomir Aleksandrov and
  • Reni Iordanova

Beilstein J. Nanotechnol. 2017, 8, 2454–2463, doi:10.3762/bjnano.8.244

Graphical Abstract
  • the induced defects only. At a fluence of greater than 3 J/cm2, ablation of the sample was observed. It should be mentioned that the absorption of the laser energy at 266 nm occurs within a thin surface layer due to the high absorbance of the material in this range (see Figure 1). This results in an
  • variation of the laser fluence, up to the ablation threshold, and for a different number of laser pulses up to 9000. After laser irradiation, the glass samples were annealed for 30 min at 600 °C. These conditions were found to be optimal regarding the material response. At higher temperatures or longer
  • shifted to 520 nm when the laser fluence of 3 J/cm2 was applied. Annealing the samples irradiated at 355, 532and 1064 nm at fluences below the ablation threshold did not affect their absorbance spectra under all irradiation conditions tested. Therefore, the appearance of color centers in the glass is a
PDF
Album
Full Research Paper
Published 21 Nov 2017

Au nanostructure fabrication by pulsed laser deposition in open air: Influence of the deposition geometry

  • Rumen G. Nikov,
  • Anna Og. Dikovska,
  • Nikolay N. Nedyalkov,
  • Georgi V. Avdeev and
  • Petar A. Atanasov

Beilstein J. Nanotechnol. 2017, 8, 2438–2445, doi:10.3762/bjnano.8.242

Graphical Abstract
  • material was deposited on quartz substrates. The laser ablation was performed using an Nd:YAG laser system (Lotis LS-2147) operating at a wavelength of 355 nm with a pulse duration of 15 ns and a repetition rate of 10 Hz. The PLD experiments were carried out in air at atmospheric pressure. The angle
  • in the ablation plume due to intensive collisions between the particles, which confirms the previous results [21]. The nanoparticle size distribution corresponding to the TEM image is also shown in Figure 1a. The diameter of the nanoparticles ranges from 2 to 9 nm and the mean diameter is around 4 nm
  • pattern with intensity normalized by the (022) peak. On the other hand, as was previously reported, the same structures were obtained independently on crystalline or amorphous substrates [21]. This gives us a reason to suggest that the crystalline nanoparticles and aggregates formed in the ablation plume
PDF
Album
Full Research Paper
Published 17 Nov 2017

Fabrication of carbon nanospheres by the pyrolysis of polyacrylonitrile–poly(methyl methacrylate) core–shell composite nanoparticles

  • Dafu Wei,
  • Youwei Zhang and
  • Jinping Fu

Beilstein J. Nanotechnol. 2017, 8, 1897–1908, doi:10.3762/bjnano.8.190

Graphical Abstract
  • batteries [3][4][5], fuel cells [6][7], supercapacitors [8][9], catalysis carriers [10][11], drug delivery [12][13] and adsorption [14][15]. Various techniques, including arc discharge [16], laser ablation [17], chemical vapor deposition [18], and solvothermal method [19], have been developed for the
PDF
Album
Supp Info
Full Research Paper
Published 11 Sep 2017

Laser processing of thin-film multilayer structures: comparison between a 3D thermal model and experimental results

  • Babak B. Naghshine and
  • Amirkianoosh Kiani

Beilstein J. Nanotechnol. 2017, 8, 1749–1759, doi:10.3762/bjnano.8.176

Graphical Abstract
  • speed of ablation to predict the ablated area [18]. Sinha numerically solved the 2D heat equation assuming phase changes by changing the size of computational cells during ablation [19]. In some models plasma shielding was taken into account as an effective factor. An example can be seen in the work of
  • Marla et al. who solved the 1D equation for temperature-dependent properties [20]. In this paper, a transient 3D model, which has been previously proven capable of precisely predicting the temperature and ablation zone for a bulk material [21], has been modified and used for a thin-film multilayer
  • . Laser processing of Al-Si thin-film substrate The melting and boiling points of aluminum are 660 °C and 2470 °C respectively and aluminum has a latent heat of fusion of 397 kJ/kg and a latent heat of vaporization of 10,800 kJ/kg [22]. The measured and calculated ablation depths are presented in Table 2
PDF
Album
Full Research Paper
Published 24 Aug 2017

Luminescent supramolecular hydrogels from a tripeptide and nitrogen-doped carbon nanodots

  • Maria C. Cringoli,
  • Slavko Kralj,
  • Marina Kurbasic,
  • Massimo Urban and
  • Silvia Marchesan

Beilstein J. Nanotechnol. 2017, 8, 1553–1562, doi:10.3762/bjnano.8.157

Graphical Abstract
  • electron transfer and redox properties. There are two main methods to synthesize CNDs: top-down (e.g., laser ablation, electrochemical synthesis) and bottom-up (e.g., combustion, microwave irradiation) [1][2]. In particular, the use of microwave (MW) irradiation is an interesting synthetic approach, which
PDF
Album
Supp Info
Full Research Paper
Published 01 Aug 2017

Growth, structure and stability of sputter-deposited MoS2 thin films

  • Reinhard Kaindl,
  • Bernhard C. Bayer,
  • Roland Resel,
  • Thomas Müller,
  • Viera Skakalova,
  • Gerlinde Habler,
  • Rainer Abart,
  • Alexey S. Cherevan,
  • Dominik Eder,
  • Maxime Blatter,
  • Fabian Fischer,
  • Jannik C. Meyer,
  • Dmitry K. Polyushkin and
  • Wolfgang Waldhauser

Beilstein J. Nanotechnol. 2017, 8, 1115–1126, doi:10.3762/bjnano.8.113

Graphical Abstract
  • (PVD) [27][28], which includes techniques such as magnetron sputter deposition, pulsed laser ablation or evaporation [3][29][30]. In this regard, PVD offers a wide processing window in terms of attainable deposition temperatures and substrates, constituent element fluxes and kinetic energies of the
PDF
Album
Full Research Paper
Published 22 May 2017
Other Beilstein-Institut Open Science Activities