Search results

Search for "bottom-up" in Full Text gives 136 result(s) in Beilstein Journal of Nanotechnology.

Micro- and nanotechnology in biomedical engineering for cartilage tissue regeneration in osteoarthritis

  • Zahra Nabizadeh,
  • Mahmoud Nasrollahzadeh,
  • Hamed Daemi,
  • Mohamadreza Baghaban Eslaminejad,
  • Ali Akbar Shabani,
  • Mehdi Dadashpour,
  • Majid Mirmohammadkhani and
  • Davood Nasrabadi

Beilstein J. Nanotechnol. 2022, 13, 363–389, doi:10.3762/bjnano.13.31

Graphical Abstract
PDF
Album
Review
Published 11 Apr 2022

Alcohol-perturbed self-assembly of the tobacco mosaic virus coat protein

  • Ismael Abu-Baker and
  • Amy Szuchmacher Blum

Beilstein J. Nanotechnol. 2022, 13, 355–362, doi:10.3762/bjnano.13.30

Graphical Abstract
  • ; Introduction Bottom-up fabrication of nanomaterials with precise control over the spatial arrangement of components is of great interest in nanotechnology [1][2]. A promising approach to this issue is the use of templates based on self-assembling biological materials, such as nucleic acids and proteins [3][4
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2022

Effect of lubricants on the rotational transmission between solid-state gears

  • Huang-Hsiang Lin,
  • Jonathan Heinze,
  • Alexander Croy,
  • Rafael Gutiérrez and
  • Gianaurelio Cuniberti

Beilstein J. Nanotechnol. 2022, 13, 54–62, doi:10.3762/bjnano.13.3

Graphical Abstract
  • either solid-state gears or molecular gears, which are created by top-down approaches (e.g., using focused ion beams [23] or electron beams [24][25] to etch the substrate) or bottom-up approaches such as chemical synthesis [26][27]. The ultimate goal for those miniaturized gears is to implement nanoscale
PDF
Album
Supp Info
Full Research Paper
Published 05 Jan 2022

Sputtering onto liquids: a critical review

  • Anastasiya Sergievskaya,
  • Adrien Chauvin and
  • Stephanos Konstantinidis

Beilstein J. Nanotechnol. 2022, 13, 10–53, doi:10.3762/bjnano.13.2

Graphical Abstract
  • physicochemical characteristics is required for their applications in various fields on the industrial scale [15]. Generally, methods employed for the synthesis of NPs follow either the “top-down” or the “bottom-up” routes. On the one hand, in the “top-down” approach, a destructive technology is employed. The
  • production starts from bulk materials that leach out systematically, leading to the generation of NPs. The starting material can be reduced in size using either a physical or a chemical route. On the other hand, the “bottom-up” approach, or self-assembly, refers to building up a structure atom-by-atom or
PDF
Album
Supp Info
Review
Published 04 Jan 2022

The effect of cobalt on morphology, structure, and ORR activity of electrospun carbon fibre mats in aqueous alkaline environments

  • Markus Gehring,
  • Tobias Kutsch,
  • Osmane Camara,
  • Alexandre Merlen,
  • Hermann Tempel,
  • Hans Kungl and
  • Rüdiger-A. Eichel

Beilstein J. Nanotechnol. 2021, 12, 1173–1186, doi:10.3762/bjnano.12.87

Graphical Abstract
  • three main groups: electroplating, electroless plating, and bottom-up methods such as vapour deposition. Another way to introduce metals to a carbon fibre system in form of nanoparticles was reported by groups who prepared cobalt/cobalt oxide-decorated carbon nanofibres from electrospinning by adding a
  • electrospinning are a convenient and promising material for air electrodes in metal–air batteries. These studies used the cobalt-enhanced fibre material either as a bottom-up catalyst material in aqueous alkaline systems [21][22] or as free-standing electrodes in non-aqueous systems with a lab-scale geometric
PDF
Album
Supp Info
Full Research Paper
Published 19 Oct 2021

Self-assembly of amino acids toward functional biomaterials

  • Huan Ren,
  • Lifang Wu,
  • Lina Tan,
  • Yanni Bao,
  • Yuchen Ma,
  • Yong Jin and
  • Qianli Zou

Beilstein J. Nanotechnol. 2021, 12, 1140–1150, doi:10.3762/bjnano.12.85

Graphical Abstract
  • nanostructures at both microscopic and macroscopic scales. Amino acids, as the smallest constituent of proteins and the smallest constituent in the bottom-up approach, are the smallest building blocks that can be self-assembled. The self-assembly of single amino acids has the advantages of low synthesis cost
  • of all naturally occurring peptides and proteins [25]. Amino-acid-based nanostructures are self-assembled from the simplest building blocks in the biological system environment and are the smallest component of the bottom-up approach [26]. Amino acids and their derivatives can be self-assembled into
  • interaction to construct a co-delivery system. Conclusion The self-assembly of biomolecules is based on the noncovalent interaction and the bottom-up combination of ordered 3D structures. Nanotechnology is the driving force of self-assembly, and it has made great contributions to the field of biology and
PDF
Album
Review
Published 12 Oct 2021

Molecular assemblies on surfaces: towards physical and electronic decoupling of organic molecules

  • Sabine Maier and
  • Meike Stöhr

Beilstein J. Nanotechnol. 2021, 12, 950–956, doi:10.3762/bjnano.12.71

Graphical Abstract
  • molecules, offering unique opportunities for the bottom-up assembly of novel carbon-based materials using on-surface chemistry [48][49]. However, the significantly reduced catalytic activity on non-metallic substrates requires exploring alternative reaction mechanisms beyond thermal activation, for example
PDF
Editorial
Published 23 Aug 2021

Electromigration-induced formation of percolating adsorbate islands during condensation from the gaseous phase: a computational study

  • Alina V. Dvornichenko,
  • Vasyl O. Kharchenko and
  • Dmitrii O. Kharchenko

Beilstein J. Nanotechnol. 2021, 12, 694–703, doi:10.3762/bjnano.12.55

Graphical Abstract
  • require free sites on the target layer. For the adsorbate concentration on the first growing layer for ft one gets: ft = k↓y(1 − x) − k↑x(1 − y), where y(r,t) is the adsorbate concentration on the second layer; k↑,↓ are the rates of bottom-up motion and vice versa, respectively. Next we assume, that the
PDF
Album
Letter
Published 13 Jul 2021

Paper-based triboelectric nanogenerators and their applications: a review

  • Jing Han,
  • Nuo Xu,
  • Yuchen Liang,
  • Mei Ding,
  • Junyi Zhai,
  • Qijun Sun and
  • Zhong Lin Wang

Beilstein J. Nanotechnol. 2021, 12, 151–171, doi:10.3762/bjnano.12.12

Graphical Abstract
  • process or to rotary screen printing, which enables a facile and high-throughput printing on curved surfaces. The deposition process assisted with soft stencils is another “bottom-up” method for the preparation of functional materials on flexible and irregular surfaces. Even though P-TENGs require
PDF
Album
Review
Published 01 Feb 2021

A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures

  • Sina Kaabipour and
  • Shohreh Hemmati

Beilstein J. Nanotechnol. 2021, 12, 102–136, doi:10.3762/bjnano.12.9

Graphical Abstract
  • ]. The first one is the top-down approach where particles are produced from the bulk material, and the second one is the bottom-up approach where nucleation sites are formed and finally grow into a nanometer-sized particle. The first approach consists of a set of techniques also known as “physical
  • method is primarily used for large-scale production in a short amount of time [137]. The bottom-up approach, however, mostly relies on the use of reducing agents for the production of silver nanoparticles. This approach is also categorized into two distinguishable, but not completely disparate, set of
  • currently among the most widely used approaches [104][166]. The second category in bottom-up synthesis methods consists of a set of techniques that incorporate the use of non-chemical reagents for the synthesis of silver nanostructures. Those techniques rely on the use of biological agents or bio-extracted
PDF
Album
Review
Published 25 Jan 2021

Optically and electrically driven nanoantennas

  • Monika Fleischer,
  • Dai Zhang and
  • Alfred J. Meixner

Beilstein J. Nanotechnol. 2020, 11, 1542–1545, doi:10.3762/bjnano.11.136

Graphical Abstract
  • top-down approaches such as thin film deposition and nanopatterning, as well as bottom-up approaches such as chemical synthesis and self-assembly [38]. Gap sizes may range from a few tens of nanometers down to sub-nanometer tunnel junctions, where the classical description of the plasmonic behavior
PDF
Editorial
Published 07 Oct 2020

Wafer-level integration of self-aligned high aspect ratio silicon 3D structures using the MACE method with Au, Pd, Pt, Cu, and Ir

  • Mathias Franz,
  • Romy Junghans,
  • Paul Schmitt,
  • Adriana Szeghalmi and
  • Stefan E. Schulz

Beilstein J. Nanotechnol. 2020, 11, 1439–1449, doi:10.3762/bjnano.11.128

Graphical Abstract
  • nanoparticles were used to locally etch the silicon substrate. This work demonstrates a bottom-up self-assembly approach for noble metal nanoparticle formation and the subsequent silicon wet etching. The macroscopic wafer patterning has been done by using a poly(methyl methacrylate) masking layer. Different
  • with a reflectance below 0.3%. The demonstrated technology can be integrated into common fabrication processes for microelectromechanical systems. Keywords: black silicon; bottom-up; metal-assisted chemical etching (MACE); nanowires; wafer-level integration; Introduction Silicon nanostructures
  • significantly boost the performance of modern sensors, energy storage devices, or energy harvesters and have become essential in their development. These structures can either be well-defined regular structures fabricated in a top-down process, or self-assembled random structures from bottom-up processes. These
PDF
Album
Full Research Paper
Published 23 Sep 2020

Analysis of catalyst surface wetting: the early stage of epitaxial germanium nanowire growth

  • Owen C. Ernst,
  • Felix Lange,
  • David Uebel,
  • Thomas Teubner and
  • Torsten Boeck

Beilstein J. Nanotechnol. 2020, 11, 1371–1380, doi:10.3762/bjnano.11.121

Graphical Abstract
  • dewetting process, since the name of the resulting structures are nanoparticles or clusters but rarely droplets. Nevertheless, the origin of these structures from fluid-like states offers the opportunity for novel bottom-up techniques to produce precursor materials for functional materials, such as
PDF
Album
Supp Info
Full Research Paper
Published 09 Sep 2020

3D superconducting hollow nanowires with tailored diameters grown by focused He+ beam direct writing

  • Rosa Córdoba,
  • Alfonso Ibarra,
  • Dominique Mailly,
  • Isabel Guillamón,
  • Hermann Suderow and
  • José María De Teresa

Beilstein J. Nanotechnol. 2020, 11, 1198–1206, doi:10.3762/bjnano.11.104

Graphical Abstract
  • . The presented methodology yields an advanced bottom-up approach for the fabrication of innovative 3D nano-architectures, in which nano-superconductivity may provide an advantage, for future electronic components, particularly for sensors, energy-storage components, and quantum computing. Experimental
PDF
Album
Supp Info
Full Research Paper
Published 11 Aug 2020

Revealing the local crystallinity of single silicon core–shell nanowires using tip-enhanced Raman spectroscopy

  • Marius van den Berg,
  • Ardeshir Moeinian,
  • Arne Kobald,
  • Yu-Ting Chen,
  • Anke Horneber,
  • Steffen Strehle,
  • Alfred J. Meixner and
  • Dai Zhang

Beilstein J. Nanotechnol. 2020, 11, 1147–1156, doi:10.3762/bjnano.11.99

Graphical Abstract
  • standing topics of various investigations because silicon is still the most widely used semiconductor material for a broad range of micro- and nano-electromechanical systems, microelectronics, and photovoltaics [1][2]. Silicon nanostructures, such as bottom-up-grown nanowires [3], were also synthesized
  • to chemical vapor deposition (CVD), and enables direct nanowire growth in a bottom-up manner. The nanowire composition, in particular the doping concentration, can be controlled by an adequate adjustment of the synthesis gas mixture, e.g., by setting the SiH4/B2H6 ratio during the synthesis of boron
PDF
Album
Supp Info
Full Research Paper
Published 31 Jul 2020

Light–matter interactions in two-dimensional layered WSe2 for gauging evolution of phonon dynamics

  • Avra S. Bandyopadhyay,
  • Chandan Biswas and
  • Anupama B. Kaul

Beilstein J. Nanotechnol. 2020, 11, 782–797, doi:10.3762/bjnano.11.63

Graphical Abstract
  • , grown from bottom-up processes akin to graphene. While graphene is comprised of a single element on the periodic table, i.e., carbon, TMDCs are binary compounds which makes their lattice dynamics more complex compared to multilayer (ML) graphene [6]. The symmetry, force constants, and frequency
PDF
Album
Supp Info
Full Research Paper
Published 12 May 2020

Soybean-derived blue photoluminescent carbon dots

  • Shanshan Wang,
  • Wei Sun,
  • Dong-sheng Yang and
  • Fuqian Yang

Beilstein J. Nanotechnol. 2020, 11, 606–619, doi:10.3762/bjnano.11.48

Graphical Abstract
  • -temperature annealing. Both methods can be categorized as top-down methods in contrast to bottom-up methods. The PL characteristics of the CDs produced by both methods are analyzed, and the PL mechanisms of the CDs are discussed. The strategies developed in this work offer simple and effective means for
PDF
Album
Supp Info
Full Research Paper
Published 09 Apr 2020

Nanoarchitectonics: bottom-up creation of functional materials and systems

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2020, 11, 450–452, doi:10.3762/bjnano.11.36

Graphical Abstract
  • Katsuhiko Ariga WPI-MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan 10.3762/bjnano.11.36 Keywords: bottom-up
  • high efficiency and specificity in their functions. For this general demand, the bottom-up creation of functional materials and systems from nanometer-scale and molecular units using nanotechnology principles is necessary. This can be accomplished by the conceptual fusion of nanotechnology with the
  • [14][15], sensing [16][17], catalysis [18], energy [19], environmental [20], devices [21][22], and bio-related [23][24] applications. Accordingly, the goal of the thematic issue “Nanoarchitectonics: bottom-up creation of functional materials and systems” was to collect leading research examples that
PDF
Album
Editorial
Published 12 Mar 2020

Molecular architectonics of DNA for functional nanoarchitectures

  • Debasis Ghosh,
  • Lakshmi P. Datta and
  • Thimmaiah Govindaraju

Beilstein J. Nanotechnol. 2020, 11, 124–140, doi:10.3762/bjnano.11.11

Graphical Abstract
  • short oligonucleotides are inexpensive to synthesize in-house or commercially available, and their coassembly with SFMs assures to generate novel nanoarchitectures with functional properties and applications. Although the field of classical DNA nanotechnology exploited the supramolecular bottom-up self
  • -dependent pathway, while the rigid and sharp-edged features bestow the thermal and enzymatic stability. The construction of a DNA tetrahedron was first attempted by Turberfield and co-workers, wherein short oligonucleotide sequences were used for the bottom-up assembly process [66]. In addition to short
PDF
Album
Review
Published 09 Jan 2020

Integration of sharp silicon nitride tips into high-speed SU8 cantilevers in a batch fabrication process

  • Nahid Hosseini,
  • Matthias Neuenschwander,
  • Oliver Peric,
  • Santiago H. Andany,
  • Jonathan D. Adams and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2019, 10, 2357–2363, doi:10.3762/bjnano.10.226

Graphical Abstract
  • fabrication yield and an easy bottom-up recipe. Genolet et al. have shown AFM images of DNA-plasmid molecules using SU8 cantilevers [21]. SU8-based Hall effect sensor cantilevers have also been presented by Mouaziz and co-workers [22]. In addition, SU8 cantilevers have shown a performance of high-speed
PDF
Album
Full Research Paper
Published 29 Nov 2019

Review of advanced sensor devices employing nanoarchitectonics concepts

  • Katsuhiko Ariga,
  • Tatsuyuki Makita,
  • Masato Ito,
  • Taizo Mori,
  • Shun Watanabe and
  • Jun Takeya

Beilstein J. Nanotechnol. 2019, 10, 2014–2030, doi:10.3762/bjnano.10.198

Graphical Abstract
  • be process integration of top down microfabrication and bottom up self-organization to bridge materials and systems over a wide scale range. To combine all of these techniques and functional materials, the concept of nanoarchitectonics becomes a crucial bridge in this roadmap. Outline of the
PDF
Album
Review
Published 16 Oct 2019

Nanostructured and oriented metal–organic framework films enabling extreme surface wetting properties

  • Andre Mähringer,
  • Julian M. Rotter and
  • Dana D. Medina

Beilstein J. Nanotechnol. 2019, 10, 1994–2003, doi:10.3762/bjnano.10.196

Graphical Abstract
  • development of a straightforward and versatile bottom-up synthesis scheme enabling tunable surface morphologies for controlled wetting properties is still challenging and highly desired. Metal–organic frameworks (MOFs) are porous, crystalline materials featuring a great structural and chemical diversity [40
  • of experiments establishes the pillar-like nanostructured Ni-CAT-1 films as highly efficient, antifog coatings featuring additional desired properties such as light absorbance. Furthermore, it underlines the power of VAC in enabling controlled bottom-up fabrication of MOF films with well-defined
  • demonstrate that on-surface alteration of the MOF film morphology by versatile solution-based bottom-up methods such as VAC is a powerful tool for realizing the potential of MOFs in surface-based technologies such as oil–water separation systems, antioil coatings, or self-cleaning surfaces. Furthermore, the
PDF
Album
Supp Info
Full Research Paper
Published 09 Oct 2019

Toxicity and safety study of silver and gold nanoparticles functionalized with cysteine and glutathione

  • Barbara Pem,
  • Igor M. Pongrac,
  • Lea Ulm,
  • Ivan Pavičić,
  • Valerije Vrček,
  • Darija Domazet Jurašin,
  • Marija Ljubojević,
  • Adela Krivohlavek and
  • Ivana Vinković Vrček

Beilstein J. Nanotechnol. 2019, 10, 1802–1817, doi:10.3762/bjnano.10.175

Graphical Abstract
  • uses. Results and Discussion Synthesis and characterization of nanoparticles For the synthesis of AgNPs and AuNPs, a common bottom-up approach was applied using sodium borohydride as an agent to reduce Ag+ and Au3+, respectively. The optimization of the synthetic protocol was achieved by a series of
PDF
Album
Supp Info
Full Research Paper
Published 02 Sep 2019

Biocatalytic oligomerization-induced self-assembly of crystalline cellulose oligomers into nanoribbon networks assisted by organic solvents

  • Yuuki Hata,
  • Yuka Fukaya,
  • Toshiki Sawada,
  • Masahito Nishiura and
  • Takeshi Serizawa

Beilstein J. Nanotechnol. 2019, 10, 1778–1788, doi:10.3762/bjnano.10.173

Graphical Abstract
  • ; nanoribbon networks; oligomerization-induced self-assembly; organic solvent; Introduction Nanoarchitectonics is an emerging concept based on nanotechnology and other scientific fields, such as supramolecular chemistry, for constructing functional materials and systems in a bottom-up manner with the
PDF
Album
Correction
Full Research Paper
Published 26 Aug 2019

Precise local control of liquid crystal pretilt on polymer layers by focused ion beam nanopatterning

  • Maxim V. Gorkunov,
  • Irina V. Kasyanova,
  • Vladimir V. Artemov,
  • Alena V. Mamonova and
  • Serguei P. Palto

Beilstein J. Nanotechnol. 2019, 10, 1691–1697, doi:10.3762/bjnano.10.164

Graphical Abstract
  • ) through the value of 2π (above broad stripe 12, counted from the bottom) up to a value close to 4π (above the top broad stripe 16). By adding a Berek compensator to the PLM setup we measure the phase retardation Γp at the same wavelength of 546 nm separately above each broad stripe. Remarkably, the
PDF
Album
Full Research Paper
Published 12 Aug 2019
Other Beilstein-Institut Open Science Activities