Search results

Search for "electrical transport" in Full Text gives 38 result(s) in Beilstein Journal of Nanotechnology.

Current–voltage characteristics of manganite–titanite perovskite junctions

  • Benedikt Ifland,
  • Patrick Peretzki,
  • Birte Kressdorf,
  • Philipp Saring,
  • Andreas Kelling,
  • Michael Seibt and
  • Christian Jooss

Beilstein J. Nanotechnol. 2015, 6, 1467–1484, doi:10.3762/bjnano.6.152

Graphical Abstract
  • direction, kppd approaches kppd,eq and Equation 15 reduces to the conventional Shockley equation with ideality factor n = 1. Disorder and polycrystalline structure have a strong impact on the electrical transport in organic junctions, since the polarons can be trapped at defects. Consequently, the absolute
PDF
Album
Full Research Paper
Published 07 Jul 2015

Electrical properties of single CdTe nanowires

  • Elena Matei,
  • Camelia Florica,
  • Andreea Costas,
  • María Eugenia Toimil-Molares and
  • Ionut Enculescu

Beilstein J. Nanotechnol. 2015, 6, 444–450, doi:10.3762/bjnano.6.45

Graphical Abstract
  • the nanowire drastically improved the transport properties. This was tested in this work and to our knowledge, only one previous paper dealt with the electrical transport of individual nanowires [20]. No observation of passivation effects on CdTe nanowires was previously reported. We also observed a
PDF
Album
Full Research Paper
Published 12 Feb 2015

Electrical contacts to individual SWCNTs: A review

  • Wei Liu,
  • Christofer Hierold and
  • Miroslav Haluska

Beilstein J. Nanotechnol. 2014, 5, 2202–2215, doi:10.3762/bjnano.5.229

Graphical Abstract
  • . Challenges Several milestones have been achieved regarding the improvement of electrical transport at the metal–CNT interface over the past decades. Nevertheless, there are still some challenges to be resolved before CNFET-based devices can be extensively used in a variety of applications. The most important
  • scale. To further optimize the capability of the fabrication process, more statistical analysis on wafer-level fabrication is needed. Conclusion Both a theoretical understanding of the electrical transport in CNFETs and experimental techniques required for fabrication of high quality CNFETS with
PDF
Album
Review
Published 21 Nov 2014

Advances in NO2 sensing with individual single-walled carbon nanotube transistors

  • Kiran Chikkadi,
  • Matthias Muoth,
  • Cosmin Roman,
  • Miroslav Haluska and
  • Christofer Hierold

Beilstein J. Nanotechnol. 2014, 5, 2179–2191, doi:10.3762/bjnano.5.227

Graphical Abstract
  • summarize the current knowledge on this topic, focusing not only on the effect of adsorbates but also the effect of dielectric charge traps on the electrical transport in single-walled carbon nanotube transistors that are to be used in sensing applications. Recently, contact-passivated, open-channel
  • electrical transport is crucial to sensor design and architecture. For a CNFET to be sensitive to a certain gas, the gas molecules must be able to interact and bind to the device surface and produce a change in the electrical transport of the device. A lively debate is prevalent in literature about the
PDF
Album
Review
Published 20 Nov 2014

Effect of channel length on the electrical response of carbon nanotube field-effect transistors to deoxyribonucleic acid hybridization

  • Hari Krishna Salila Vijayalal Mohan,
  • Jianing An,
  • Yani Zhang,
  • Chee How Wong and
  • Lianxi Zheng

Beilstein J. Nanotechnol. 2014, 5, 2081–2091, doi:10.3762/bjnano.5.217

Graphical Abstract
  • induced surface charges, which in turn, modulates their electrical transport [16][17]. However, most of the previous FET-based investigations for DNA–DNA hybridization detection predominantly used short individual nanotubes or random networks, which revealed Schottky barrier modification as their dominant
PDF
Album
Supp Info
Full Research Paper
Published 12 Nov 2014

Optical properties and electrical transport of thin films of terbium(III) bis(phthalocyanine) on cobalt

  • Peter Robaschik,
  • Pablo F. Siles,
  • Daniel Bülz,
  • Peter Richter,
  • Manuel Monecke,
  • Michael Fronk,
  • Svetlana Klyatskaya,
  • Daniel Grimm,
  • Oliver G. Schmidt,
  • Mario Ruben,
  • Dietrich R. T. Zahn and
  • Georgeta Salvan

Beilstein J. Nanotechnol. 2014, 5, 2070–2078, doi:10.3762/bjnano.5.215

Graphical Abstract
  • technique allows local variations of the organic film topography to be correlated with electrical transport properties. Local current mapping as well as local I–V spectroscopy shows that despite the granular structure of the films, the electrical transport is uniform through the organic films on the
  • the Tb couples antiferromagnetically to the Co substrate [11]. In this work we focus on the study of other device-relevant aspects: the influence of the film thickness, morphology, and molecular orientation on the electrical transport in TbPc2 layers on polycrystalline cobalt films. The TbPc2 molecule
PDF
Album
Supp Info
Full Research Paper
Published 11 Nov 2014

Silicon and germanium nanocrystals: properties and characterization

  • Ivana Capan,
  • Alexandra Carvalho and
  • José Coutinho

Beilstein J. Nanotechnol. 2014, 5, 1787–1794, doi:10.3762/bjnano.5.189

Graphical Abstract
  • determined from the Arrhenius plot (given in the inset). The observed deep level trap at 0.22 eV resembles those already reported [25][38] and it has been already ascribed to charge trapping centers associated with Ge NCs. Another open and still unresolved problem is the electrical transport across doped NC
PDF
Album
Review
Published 16 Oct 2014

Structural and thermoelectric properties of TMGa3 (TM = Fe, Co) thin films

  • Sebastian Schnurr,
  • Ulf Wiedwald,
  • Paul Ziemann,
  • Valeriy Y. Verchenko and
  • Andrei V. Shevelkov

Beilstein J. Nanotechnol. 2013, 4, 461–466, doi:10.3762/bjnano.4.54

Graphical Abstract
  • clear that all films are highly disordered with respect to their structure. This immediately poses the question as to how such strong disorder affects electrical transport properties like resistivity, ρ, and Seebeck coefficient, S. For amorphous metals, often addressed also as metallic glasses, this
PDF
Album
Full Research Paper
Published 31 Jul 2013

Photoresponse from single upright-standing ZnO nanorods explored by photoconductive AFM

  • Igor Beinik,
  • Markus Kratzer,
  • Astrid Wachauer,
  • Lin Wang,
  • Yuri P. Piryatinski,
  • Gerhard Brauer,
  • Xin Yi Chen,
  • Yuk Fan Hsu,
  • Aleksandra B. Djurišić and
  • Christian Teichert

Beilstein J. Nanotechnol. 2013, 4, 208–217, doi:10.3762/bjnano.4.21

Graphical Abstract
  • technique to study the electrical transport in individual upright standing ZnO NRs grown by thermal evaporation [41]. The results obtained together with those of time-resolved photoluminescence (PL) suggest that the photoresponse in ZnO NRs originates preferentially from the photoexcitation of charge
PDF
Album
Full Research Paper
Published 21 Mar 2013
Graphical Abstract
  • investigations of the electrical transport properties of metal and semiconductor nanowires are necessary in order to better understand classical size effects such as electron scattering at surfaces and grain boundaries. These effects lead to an increase of the specific resistivity of the wire under study
PDF
Album
Review
Published 17 Dec 2012

Physics, chemistry and biology of functional nanostructures

  • Paul Ziemann and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2012, 3, 843–845, doi:10.3762/bjnano.3.94

Graphical Abstract
  • , in turn, stands alongside previous series. Of special interest appear those reports dealing with self-assembly on solid surfaces, micro- and mesoporous solids, electrical transport through nanostructures, nanooptical aspects, organic–inorganic hybrids and properties of magnetic nanoparticles. A much
  • broader view on biomimetic approaches can be found in [8]. The choice of these recommendations becomes obvious on summarizing the main topics of the present Thematic Series: Nanolithography approaches based on self-organized colloidal systems Experimental and theoretical description of electrical
  • transport through nanostructures. Here, focus is put on the electrochemically controlled preparation of metallic point contacts [9][10] Magnetic behavior of nanoparticles and -wires Nanophotonics Effect of nanoporosity on the catalytic properties of Au oxidizing CO Theoretical description of organic
PDF
Editorial
Published 11 Dec 2012

Focused electron beam induced deposition: A perspective

  • Michael Huth,
  • Fabrizio Porrati,
  • Christian Schwalb,
  • Marcel Winhold,
  • Roland Sachser,
  • Maja Dukic,
  • Jonathan Adams and
  • Georg Fantner

Beilstein J. Nanotechnol. 2012, 3, 597–619, doi:10.3762/bjnano.3.70

Graphical Abstract
  • microstructure of materials obtained by FEBID falls into the three categories amorphous, nanogranular or nanocomposite and polycrystalline. Depending on the microstructure the physical properties vary substantially, e.g., with regard to electrical transport, magnetism or the mechanical strength. Since the local
  • theory is not applicable since disorder does not simply cause scattering but must be included in the theoretical analysis from the beginning. A recent theoretical review on the electronic transport properties of granular metals can be found in [12]. The electrical transport within the metallic grains can
PDF
Album
Video
Review
Published 29 Aug 2012

Review and outlook: from single nanoparticles to self-assembled monolayers and granular GMR sensors

  • Alexander Weddemann,
  • Inga Ennen,
  • Anna Regtmeier,
  • Camelia Albon,
  • Annalena Wolff,
  • Katrin Eckstädt,
  • Nadine Mill,
  • Michael K.-H. Peter,
  • Jochen Mattay,
  • Carolin Plattner,
  • Norbert Sewald and
  • Andreas Hütten

Beilstein J. Nanotechnol. 2010, 1, 75–93, doi:10.3762/bjnano.1.10

Graphical Abstract
  • results in a force onto the particles which entails the assembly close to air–liquid boundary. This allows for a controlled positioning of the particle monolayer within a specified target region (on top of magnetoresistive sensors, between contacts for measurements of electrical transport properties etc
PDF
Album
Review
Published 22 Nov 2010
Other Beilstein-Institut Open Science Activities