Search results

Search for "first-principles calculations" in Full Text gives 44 result(s) in Beilstein Journal of Nanotechnology.

Coexistence of strongly buckled germanene phases on Al(111)

  • Weimin Wang and
  • Roger I. G. Uhrberg

Beilstein J. Nanotechnol. 2017, 8, 1946–1951, doi:10.3762/bjnano.8.195

Graphical Abstract
  • energy electron diffraction and core-level photoelectron spectroscopy. Experimental results show that a germanium layer can be formed at a relatively high substrate temperature showing either (3×3) or (√7×√7)R±19.1° reconstructions. First-principles calculations based on density functional theory suggest
PDF
Album
Supp Info
Full Research Paper
Published 18 Sep 2017

α-Silicene as oxidation-resistant ultra-thin coating material

  • Ali Kandemir,
  • Fadil Iyikanat,
  • Cihan Bacaksiz and
  • Hasan Sahin

Beilstein J. Nanotechnol. 2017, 8, 1808–1814, doi:10.3762/bjnano.8.182

Graphical Abstract
  • silicene on top of Ag(111). First principles calculations were performed using the Vienna ab initio simulation package (VASP) [22][23], which is based on density functional theory. The projector-augmented wave (PAW) [24][25] formalism was used in the calculations. For the exchange–correlation energy, the
  • principles calculations to investigate the oxidation properties of α-silicene as a coating material on Ag(111). It was found that an O2 molecule interact with the Ag surface with a low binding energy, while a single oxygen atom interact strongly with the surface. The silicene coating on Ag surface was
  • silicene on metal substrates. One may claim that silicene retains its extreme reactivity to oxygen atoms even after forming localized silicon-oxide structures. As a result, silicene has great potential to capture unwanted atoms and to protect the metal surface. Conclusions In this study, we performed first
PDF
Album
Full Research Paper
Published 31 Aug 2017

3D continuum phonon model for group-IV 2D materials

  • Morten Willatzen,
  • Lok C. Lew Yan Voon,
  • Appala Naidu Gandi and
  • Udo Schwingenschlögl

Beilstein J. Nanotechnol. 2017, 8, 1345–1356, doi:10.3762/bjnano.8.136

Graphical Abstract
  • , we compare them to DFT calculations. The continuum theory will require as input elasticity constants, piezoelectric coefficients, and dielectric functions. DFT We first give the standard phonon dispersion relation as obtained from DFT calculations (Figure 1). They are obtained from first principles
  • calculations using the Vienna ab initio simulation package (VASP) [17] with a kinetic energy cut-off of 500 eV in the expansion of the electronic wave functions. Four C and six Mo and S valence electrons are considered. The generalized gradient approximation of the exchange–correlation potential in the Perdew
PDF
Album
Full Research Paper
Published 30 Jun 2017

The role of 2D/3D spin-polarization interactions in hybrid copper hydroxide acetate: new insights from first-principles molecular dynamics

  • Ziyad Chaker,
  • Guido Ori,
  • Mauro Boero and
  • Carlo Massobrio

Beilstein J. Nanotechnol. 2017, 8, 857–860, doi:10.3762/bjnano.8.86

Graphical Abstract
  • ][9] with a similar approach by means of first-principles calculations showed a cooperative spin-state transition upon application of pressure for a hybrid metal–organic framework perovskite. Both the transition pressure and the width of the hysteresis have found to be strongly dependent on the nature
PDF
Album
Letter
Published 12 Apr 2017

Current-induced runaway vibrations in dehydrogenated graphene nanoribbons

  • Rasmus Bjerregaard Christensen,
  • Jing-Tao Lü,
  • Per Hedegård and
  • Mads Brandbyge

Beilstein J. Nanotechnol. 2016, 7, 68–74, doi:10.3762/bjnano.7.8

Graphical Abstract
  • their effect in an unambiguous way. Thus, it is of interest to be able to propose such a setup based on first principles calculations with realistic unadjustable parameters. In this paper, we study the current-induced dynamics in a partially dehydrogenated armchair graphene ribbon. We show that, atomic
PDF
Album
Letter
Published 20 Jan 2016

High Ion/Ioff current ratio graphene field effect transistor: the role of line defect

  • Mohammad Hadi Tajarrod and
  • Hassan Rasooli Saghai

Beilstein J. Nanotechnol. 2015, 6, 2062–2068, doi:10.3762/bjnano.6.210

Graphical Abstract
  • electrical structure of the transistor channel, which conformed to the first-principles calculations used to describe the electronic band structure of ELD-AGNRs [19][20]. The Hamiltonian computation in this system was separated into AGNR (HA), line defect (HD) and coupling between AGNR and the defect (HC
PDF
Album
Full Research Paper
Published 23 Oct 2015

Atomic scale interface design and characterisation

  • Carla Bittencourt,
  • Chris Ewels and
  • Arkady V. Krasheninnikov

Beilstein J. Nanotechnol. 2015, 6, 1708–1711, doi:10.3762/bjnano.6.174

Graphical Abstract
  • better than 0.1 nm, in addition to elemental analysis [25]. The analysis of experimental results can significantly profit from the comparison of the images to the results of first-principles calculations. Similarly, for the precise interpretation of experimental scanning tunneling microscopy (STM) and
PDF
Editorial
Published 10 Aug 2015

Simple and efficient way of speeding up transmission calculations with k-point sampling

  • Jesper Toft Falkenberg and
  • Mads Brandbyge

Beilstein J. Nanotechnol. 2015, 6, 1603–1608, doi:10.3762/bjnano.6.164

Graphical Abstract
  • first principles calculations where the leads/electrodes are described by periodic boundary conditions. We show examples of transport in graphene structures where a speed-up of an order of magnitude is easily obtained. Keywords: density functional theory; electronic conductance; interpolation; post
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2015

Possibilities and limitations of advanced transmission electron microscopy for carbon-based nanomaterials

  • Xiaoxing Ke,
  • Carla Bittencourt and
  • Gustaaf Van Tendeloo

Beilstein J. Nanotechnol. 2015, 6, 1541–1557, doi:10.3762/bjnano.6.158

Graphical Abstract
  • suggests a C–N bond [94]. Together with the help of first principles calculations, STEM–EELS further reveals the configurations of single N-substitutions in SWCNT as graphitic and pyrrolic [95]. A more striking result is reported in Si-doped graphene [96], in which a sp3-like trivalent Si substitute and a
PDF
Album
Review
Published 16 Jul 2015

Electronic interaction in composites of a conjugated polymer and carbon nanotubes: first-principles calculation and photophysical approaches

  • Florian Massuyeau,
  • Jany Wéry,
  • Jean-Luc Duvail,
  • Serge Lefrant,
  • Abu Yaya,
  • Chris Ewels and
  • Eric Faulques

Beilstein J. Nanotechnol. 2015, 6, 1138–1144, doi:10.3762/bjnano.6.115

Graphical Abstract
  • density functional theory (DFT) calculations of coupling effects between the polymer and both species of SWNTs. Combined experimental results and first-principles calculations provide evidence that significant electronic interaction can take place between PPV chains and semiconducting SWNTs while metallic
PDF
Album
Full Research Paper
Published 08 May 2015

Raman spectroscopy as a tool to investigate the structure and electronic properties of carbon-atom wires

  • Alberto Milani,
  • Matteo Tommasini,
  • Valeria Russo,
  • Andrea Li Bassi,
  • Andrea Lucotti,
  • Franco Cataldo and
  • Carlo S. Casari

Beilstein J. Nanotechnol. 2015, 6, 480–491, doi:10.3762/bjnano.6.49

Graphical Abstract
  • ., determination of wire length). Moreover, by employing Raman spectroscopy and surface enhanced Raman scattering in combination with the support of first principles calculations, we show that a detailed understanding of the charge transfer between CAWs and metal nanoparticles may open the possibility to tune the
  • wavelengths with the support of first principles calculations will be reviewed. We begin by discussing the structure of ideal and as-synthesized CAWs with particular focus on π-conjugation effects and the change in electronic properties as a result of the wire length and termination. Then we review the
  • ), which have been discussed in detail in [32] through theoretical analysis and first-principles calculations. This spectral region is particular to sp carbon, since none of the other carbon nanostructures have peaks in this region (see Figure 3). Within this spectral region cumulenes exhibit lower overall
PDF
Album
Review
Published 17 Feb 2015

Nanoparticle shapes by using Wulff constructions and first-principles calculations

  • Georgios D. Barmparis,
  • Zbigniew Lodziana,
  • Nuria Lopez and
  • Ioannis N. Remediakis

Beilstein J. Nanotechnol. 2015, 6, 361–368, doi:10.3762/bjnano.6.35

Graphical Abstract
  • construction. Conclusion The Wulff construction offers a simple way to characterize nanoparticles, based on symmetry and a few parameters (ratios of surface tensions and symmetry type). Coupled to first-principles calculations for surface- and interface tensions of crystals, it proves a powerful tool that can
  • -principles calculations, is a powerful tool for the analysis and prediction of the shapes of nanoparticles and tailor the properties of shape-inducing species. Keywords: density functional theory (DFT); hydrogen storage; multi-scale simulations; nanoparticles; surface energies; surfactants; Wulff
  • focus to three recent extensions: active sites of metal nanoparticles for heterogeneous catalysis, ligand-protected nanoparticles generated as colloidal suspensions and nanoparticles of complex metal hydrides for hydrogen storage. Conclusion: Wulff construction, in particular when linked to first
PDF
Album
Review
Published 03 Feb 2015

Carrier multiplication in silicon nanocrystals: ab initio results

  • Ivan Marri,
  • Marco Govoni and
  • Stefano Ossicini

Beilstein J. Nanotechnol. 2015, 6, 343–352, doi:10.3762/bjnano.6.33

Graphical Abstract
  • the recorded PL and IA signals. In this work, we investigate effects induced on CM dynamics using first principles calculations. One-site CM, Coulomb-driven charge transfer (CDCT) and SSQC processes are evaluated in detail and a hierarchy of CM lifetimes are noted. Theory In this work we investigate
  • -NCs were investigated for the first time by first-principles calculations by Govoni et al. [31], who simulated CM decays in systems of isolated and interacting Si-NCs. CM lifetimes were calculated in four different spherical and hydrogenated systems, that is the Si35H36 ( = 3.42 eV, 1.3 nm of diameter
  • potential (and by local fields) was then clarified. The effects induced by NC interplay on CM dynamics have been investigated considering a system formed by two NCs placed in close proximity, that is, Si87H76 × Si293H172. One-site CM, SSQC and CDCT lifetimes have been quantified by first principles
PDF
Album
Full Research Paper
Published 02 Feb 2015

Silicon and germanium nanocrystals: properties and characterization

  • Ivana Capan,
  • Alexandra Carvalho and
  • José Coutinho

Beilstein J. Nanotechnol. 2014, 5, 1787–1794, doi:10.3762/bjnano.5.189

Graphical Abstract
  • understand the trends found by experimental and atomistic modeling studies. More recently, significant understanding of the relationships between structure, chemistry and electronic structure has been obtained from first-principles calculations based on density functional theory. From a theoretical
  • excitation of the doped system was almost 1 eV, again indicating that free-holes are unlikely to be produced at room temperature. These results were confirmed recently by means of electrical measurements combined with first-principles calculations [22], demonstrating that F4-TCNQ within a Si NC solid film is
PDF
Album
Review
Published 16 Oct 2014

Quasi-1D physics in metal-organic frameworks: MIL-47(V) from first principles

  • Danny E. P. Vanpoucke,
  • Jan W. Jaeken,
  • Stijn De Baerdemacker,
  • Kurt Lejaeghere and
  • Veronique Van Speybroeck

Beilstein J. Nanotechnol. 2014, 5, 1738–1748, doi:10.3762/bjnano.5.184

Graphical Abstract
  • electronic structure of MIL-47(V) is investigated by using first principles calculations. An antiferromagnetic ground state is found, consisting of antiferromagnetic chains with an antiferromagnetic inter-chain coupling. This supports the experimental assumption of such a ground state favored over an
PDF
Album
Supp Info
Full Research Paper
Published 09 Oct 2014

Magnesium batteries: Current state of the art, issues and future perspectives

  • Rana Mohtadi and
  • Fuminori Mizuno

Beilstein J. Nanotechnol. 2014, 5, 1291–1311, doi:10.3762/bjnano.5.143

Graphical Abstract
  • study of borohydride-based solid state electrolytes was reported by Higashi et al. [37]. Guided by their first-principles calculations based on density functional theory (DFT), they experimentally investigated the conduction of magnesium ions in both Mg(BH4)2 and Mg(BH4)(NH2). The selection of these
PDF
Album
Review
Published 18 Aug 2014

Electronic and transport properties of kinked graphene

  • Jesper Toft Rasmussen,
  • Tue Gunst,
  • Peter Bøggild,
  • Antti-Pekka Jauho and
  • Mads Brandbyge

Beilstein J. Nanotechnol. 2013, 4, 103–110, doi:10.3762/bjnano.4.12

Graphical Abstract
  • bending, of a graphene sheet is known to increase the chemical reactivity presenting an opportunity for templated chemical functionalisation. Using first-principles calculations based on density functional theory (DFT), we investigate the reaction barrier reduction for the adsorption of atomic hydrogen at
PDF
Album
Full Research Paper
Published 15 Feb 2013

Strong spin-filtering and spin-valve effects in a molecular V–C60–V contact

  • Mohammad Koleini and
  • Mads Brandbyge

Beilstein J. Nanotechnol. 2012, 3, 589–596, doi:10.3762/bjnano.3.69

Graphical Abstract
  • and magnetic adatom on a Cu(111) surface using first-principles calculations. For the case of a vanadium tip/adatom, we demonstrate how spin coupling between the magnetic V atoms, mediated by the C60, can be observed in the electronic transport, which display a strong spin-filtering effect, allowing
  • the magnetic ligand atoms. Here, we employ first-principles calculations to predict the spin transport through a spintronic model system consisting of a C60 molecule contacted by magnetic atoms in an STM setup. In particular, we predict that vanadium is a magnetic material which will show pronounced
PDF
Album
Full Research Paper
Published 22 Aug 2012

Structural and magnetic properties of ternary Fe1–xMnxPt nanoalloys from first principles

  • Markus E. Gruner and
  • Peter Entel

Beilstein J. Nanotechnol. 2011, 2, 162–172, doi:10.3762/bjnano.2.20

Graphical Abstract
  • to 2.5 nm (561 atoms) have been explored systematically by means of large scale first principles calculations in the framework of density functional theory. For each composition several magnetic and structural configurations have been compared. Results: The concentration dependence of magnetization
  • ligands in wet-chemical approaches [36][37]. Other authors suggest tackling the kinetics of the ordering processes and structure formation, e.g., by irradiation [38][39][40][41]. Both approaches are difficult to model on the basis of first principles calculations. Alternatively, one can try to increase
  • framework of fully relativistic first principles calculations. It might also be necessary to investigate how far increased segregation of one species to surface and interfaces could affect the energetic order of the paradigmatic morphologies. Finding various phases with different structural and magnetic
PDF
Album
Full Research Paper
Published 16 Mar 2011
Other Beilstein-Institut Open Science Activities