Search results

Search for "high temperature" in Full Text gives 325 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

TEM sample preparation of lithographically patterned permalloy nanostructures on silicon nitride membranes

  • Joshua Williams,
  • Michael I. Faley,
  • Joseph Vimal Vas,
  • Peng-Han Lu and
  • Rafal E. Dunin-Borkowski

Beilstein J. Nanotechnol. 2024, 15, 1–12, doi:10.3762/bjnano.15.1

Graphical Abstract
  • sides of the resist. There are, however, a few limitations to consider: The spin-coated resist may be inhomogeneous (edge bead effect) on smaller substrates, reducing the region where high-quality structures may be obtained. Furthermore, one cannot deposit metals at high temperature, and one has to
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2024

In situ magnesiothermic reduction synthesis of a Ge@C composite for high-performance lithium-ion batterie anodes

  • Ha Tran Huu,
  • Ngoc Phi Nguyen,
  • Vuong Hoang Ngo,
  • Huy Hoang Luc,
  • Minh Kha Le,
  • Minh Thu Nguyen,
  • My Loan Phung Le,
  • Hye Rim Kim,
  • In Young Kim,
  • Sung Jin Kim,
  • Van Man Tran and
  • Vien Vo

Beilstein J. Nanotechnol. 2023, 14, 751–761, doi:10.3762/bjnano.14.62

Graphical Abstract
  • results indicate that this chemical contact is enhanced by the high-temperature treatment, which is in agreement with the improved behavior of Ge/C-SSS750 compared to Ge/C-HT180. In addition, the in situ synthesis induces an improved contact between Ge and the carbon matrix, leading to enhanced electronic
PDF
Album
Full Research Paper
Published 26 Jun 2023

Control of morphology and crystallinity of CNTs in flame synthesis with one-dimensional reaction zone

  • Muhammad Hilmi Ibrahim,
  • Norikhwan Hamzah,
  • Mohd Zamri Mohd Yusop,
  • Ni Luh Wulan Septiani and
  • Mohd Fairus Mohd Yasin

Beilstein J. Nanotechnol. 2023, 14, 741–750, doi:10.3762/bjnano.14.61

Graphical Abstract
  • , such as fuel, catalyst, temperature, and diluent. However, the heterogeneous gas properties during combustion lead to a high temperature gradient and a wide distribution of chemical species within the flame. The interrelated processes of heat generation and carbon supply requires an optimum parametric
  • observed, revealing the agglomeration and sintering of particles during high-temperature growth in the flame. The energy dispersive X-ray (EDX) analysis results in Table 1 indicate a high fraction of nickel. A previous study showed that nickel particles of 5 nm and above can be reactive towards CH4, which
  • high-temperature region close to the flame sheet and the border between fuel and oxidizer streams of the burner. Whereas, at higher HAB, the growth region is concentrated at the flame centerline. However, despite the difference in temperature, the morphology and characteristics of the CNTs synthesized
PDF
Album
Full Research Paper
Published 21 Jun 2023

The microstrain-accompanied structural phase transition from h-MoO3 to α-MoO3 investigated by in situ X-ray diffraction

  • Zeqian Zhang,
  • Honglong Shi,
  • Boxiang Zhuang,
  • Minting Luo and
  • Zhenfei Hu

Beilstein J. Nanotechnol. 2023, 14, 692–700, doi:10.3762/bjnano.14.55

Graphical Abstract
  • temperature-induced structural evolution of h-MoO3, finely ground powders were measured using an X-ray diffractometer (Rigaku SmartLab) equipped with a high-temperature holder HTTK600, using Cu Kα radiation (λ = 1.5406 Å). The 2θ range was 5–70°, and the temperature range was 30–450 °C. The scanning rate was
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2023

ZnO-decorated SiC@C hybrids with strong electromagnetic absorption

  • Liqun Duan,
  • Zhiqian Yang,
  • Yilu Xia,
  • Xiaoqing Dai,
  • Jian’an Wu and
  • Minqian Sun

Beilstein J. Nanotechnol. 2023, 14, 565–573, doi:10.3762/bjnano.14.47

Graphical Abstract
  • diversification of working conditions, new electromagnetic (EM) absorbing materials are gradually designed and fabricated to obtain thinner, lighter, wider, and stronger materials than the traditional materials such as carbonyl iron and ferrite [1][2][3][4]. SiC has the advantages of low density, high-temperature
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2023

Conjugated photothermal materials and structure design for solar steam generation

  • Chia-Yang Lin and
  • Tsuyoshi Michinobu

Beilstein J. Nanotechnol. 2023, 14, 454–466, doi:10.3762/bjnano.14.36

Graphical Abstract
  • achieved a high evaporation efficiency even at low solar intensities. Water could be continuously fed to the high-temperature section, and the evaporation rate remained constant after an initial transition period. At all light intensities, evaporation is greater with the evaporator than without the
PDF
Album
Review
Published 04 Apr 2023

Molecular nanoarchitectonics: unification of nanotechnology and molecular/materials science

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2023, 14, 434–453, doi:10.3762/bjnano.14.35

Graphical Abstract
  • oligomers at 210 °C, elongated one-dimensional structures were formed, ranging in length from a few nanometers to several tens of nanometers. They still have CF3 groups at both ends. The CF3 groups undergo coupling reactions at high temperature only in case of sufficiently close approaches of the reactants
PDF
Album
Review
Published 03 Apr 2023

Plasmonic nanotechnology for photothermal applications – an evaluation

  • A. R. Indhu,
  • L. Keerthana and
  • Gnanaprakash Dharmalingam

Beilstein J. Nanotechnol. 2023, 14, 380–419, doi:10.3762/bjnano.14.33

Graphical Abstract
  • , homogeneity, dimer formation, and placement, make them very interesting for multiple applications such as communication, hot-carrier enhanced catalysis, high-temperature sensing [61], and electronics applications such as transistors. Their extinction coefficient is often calculated using Gans theory for
PDF
Album
Review
Published 27 Mar 2023

A novel approach to pulsed laser deposition of platinum catalyst on carbon particles for use in polymer electrolyte membrane fuel cells

  • Bogusław Budner,
  • Wojciech Tokarz,
  • Sławomir Dyjak,
  • Andrzej Czerwiński,
  • Bartosz Bartosewicz and
  • Bartłomiej Jankiewicz

Beilstein J. Nanotechnol. 2023, 14, 190–204, doi:10.3762/bjnano.14.19

Graphical Abstract
  • (absolute) pressure in an argon atmosphere. After thermal ignition, a mixture of magnesium and calcium formate powders (mixed with a 6:1 molar ratio) reacted vigorously in a self-propagating high-temperature regime, giving rise to MgO/CaO and carbon as the main solid-state products. After the reaction, a
  • water and acetone, and dried at 80 °C to constant weight. The black carbon product was referred to as a C-11. The research assumed the synthesis and use of a carbon material with a high degree of graphitization as carbon support, which is more resistant to the high-temperature oxidation process in a
  • strong exothermic redox reaction (self-propagating high-temperature synthesis, SHS) between pulverized anhydrous calcium formate and magnesium powder (all reagents purchased from Sigma-Aldrich, United States). Pulsed laser deposition of platinum on the carbon supports The platinum catalyst was deposited
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2023

Formation of nanoflowers: Au and Ni silicide cores surrounded by SiOx branches

  • Feitao Li,
  • Siyao Wan,
  • Dong Wang and
  • Peter Schaaf

Beilstein J. Nanotechnol. 2023, 14, 133–140, doi:10.3762/bjnano.14.14

Graphical Abstract
  • their heterogeneous distributions in Figure 1e. Similar results of the other two samples are summarized in Supporting Information File 1, Figure S3 and Figure S4. The formation of the circular cavities can be attributed to the decomposition of the SiO2 layer at high temperature in reducing atmosphere
  • SiOx NWs have been produced on a SiO2 (300 nm)/Si substrate after a rapid heat treatment. The core particle consists of segregated Ni silicide and Au. A high temperature of 1050 °C can activate the decomposition of SiO2. Together with the subsequent active oxidation of Si, it provides the volatile SiO
PDF
Album
Supp Info
Full Research Paper
Published 20 Jan 2023

Two-step single-reactor synthesis of oleic acid- or undecylenic acid-stabilized magnetic nanoparticles by thermal decomposition

  • Mykhailo Nahorniak,
  • Pamela Pasetto,
  • Jean-Marc Greneche,
  • Volodymyr Samaryk,
  • Sandy Auguste,
  • Anthony Rousseau,
  • Nataliya Nosova and
  • Serhii Varvarenko

Beilstein J. Nanotechnol. 2023, 14, 11–22, doi:10.3762/bjnano.14.2

Graphical Abstract
  • thickness of the TMU-V particles significantly exceeded the length of the UA molecule (≈1.7 nm), indicating the formation of a multilayer shell. Conclusion The developed method of Fe(III) acetylacetonate high-temperature decomposition in the presence of a higher unsaturated carboxylic acid (OA or UA
PDF
Album
Supp Info
Full Research Paper
Published 03 Jan 2023

Structural studies and selected physical investigations of LiCoO2 obtained by combustion synthesis

  • Monika Michalska,
  • Paweł Ławniczak,
  • Tomasz Strachowski,
  • Adam Ostrowski and
  • Waldemar Bednarski

Beilstein J. Nanotechnol. 2022, 13, 1473–1482, doi:10.3762/bjnano.13.121

Graphical Abstract
  • created by using wet techniques may be controlled with a greater precision than that of a product from a solid-state method. Combustion synthesis (CS), also known as self-propagating high-temperature synthesis (SHS), is a low-cost process for handling a wide variety of industrially relevant materials. CS
  • -temperature cubic phase (LT-LCO) and a high-temperature trigonal phase (HT-LCO) [64][65]. In this case, Ni3+ (I) in the axial symmetry could be attributed to the cubic phase, and the non-axial complex Ni3+ (II) would be characteristic of the trigonal phase. If the nickel admixture is equally well incorporated
PDF
Album
Full Research Paper
Published 07 Dec 2022

Straight roads into nowhere – obvious and not-so-obvious biological models for ferrophobic surfaces

  • Wilfried Konrad,
  • Christoph Neinhuis and
  • Anita Roth-Nebelsick

Beilstein J. Nanotechnol. 2022, 13, 1345–1360, doi:10.3762/bjnano.13.111

Graphical Abstract
  • existence and stability of the gas/liquid interface and of the air pocket it encloses. Figure 5 right (b) and (c) are from [47] and were reprinted by permission from Springer Nature from the journal Journal of Bionic Engineering (“When Lotus Leaves Prevent Metal from Melting – Biomimetic Surfaces for High
  • Temperature Applications” by W. Konrad; J. Adam; S. Konietzko; C. Neinhuis), Copyright 2019 Springer Nature. This content is not subject to CC BY 4.0. The two test objects before (a, c) and after (b, d) testing. (a, b) Unmodified copper plate
PDF
Album
Perspective
Published 17 Nov 2022

Enhanced electronic transport properties of Te roll-like nanostructures

  • E. R. Viana,
  • N. Cifuentes and
  • J. C. González

Beilstein J. Nanotechnol. 2022, 13, 1284–1291, doi:10.3762/bjnano.13.106

Graphical Abstract
  • at high and low temperatures, corresponding to the thermally activated conduction (σTA) of free holes and the nearest-neighbor hopping (NNH, σNNH) [30][31][32][33], respectively. In the high-temperature region, the thermally activated conduction can be expressed as [33]: where µ0 is a constant. Since
PDF
Album
Supp Info
Full Research Paper
Published 08 Nov 2022

Studies of probe tip materials by atomic force microscopy: a review

  • Ke Xu and
  • Yuzhe Liu

Beilstein J. Nanotechnol. 2022, 13, 1256–1267, doi:10.3762/bjnano.13.104

Graphical Abstract
  • , including the length, width, and thickness of the colloidal fibers. In addition, high-temperature calcination can increase the interaction force between particles, thus enhancing the mechanical properties of colloidal fibers. Due to the rough surface structure of colloidal fibers, we made them into surface
PDF
Album
Review
Published 03 Nov 2022

Design of surface nanostructures for chirality sensing based on quartz crystal microbalance

  • Yinglin Ma,
  • Xiangyun Xiao and
  • Qingmin Ji

Beilstein J. Nanotechnol. 2022, 13, 1201–1219, doi:10.3762/bjnano.13.100

Graphical Abstract
  • recognition modes could enable sensing even in a complex environment with harsh conditions, such as high temperature, acidity, or alkalinity [44]. Haupt and Kutner et al. embedded the β-blocker S-propranolol within a poly(trimethylolpropane trimethacrylate-co-methacrylic acid) membrane on the surface of QCM
PDF
Album
Review
Published 27 Oct 2022

Solar-light-driven LaFexNi1−xO3 perovskite oxides for photocatalytic Fenton-like reaction to degrade organic pollutants

  • Chao-Wei Huang,
  • Shu-Yu Hsu,
  • Jun-Han Lin,
  • Yun Jhou,
  • Wei-Yu Chen,
  • Kun-Yi Andrew Lin,
  • Yu-Tang Lin and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 882–895, doi:10.3762/bjnano.13.79

Graphical Abstract
  • crystal diameters than LaNiO3, indicating LaFeO3 tended to grow crystal than LaNiO3 at a certain calcination temperature. However, high temperature might cause particle aggregation, leading to the lower surface area. Therefore, a moderate temperature of 700 °C was selected to obtain the perovskite
  • (≥98.0%, TC, C22H24N2O8), were provided from Sigma-Aldrich. Commercial tungsten oxide (99.8%, WO3) was bought from Alfa Aesar. Synthesis of LaFexNi1−xO3 The LaFexNi1−xO3 catalysts were synthesized via the sol–gel method with citric acid crosslinking reaction, followed by self-propagating high-temperature
  • condensation and polymerization reactions occurred between citric acid and nitrate to chelate metal ions. Subsequently, the gel was formed and transferred to a high-temperature furnace for pre-calcination by self-propagating combustion in an air environment of 300 °C. The combustion duration was 20 min to
PDF
Album
Supp Info
Full Research Paper
Published 05 Sep 2022

Optimizing PMMA solutions to suppress contamination in the transfer of CVD graphene for batch production

  • Chun-Da Liao,
  • Andrea Capasso,
  • Tiago Queirós,
  • Telma Domingues,
  • Fatima Cerqueira,
  • Nicoleta Nicoara,
  • Jérôme Borme,
  • Paulo Freitas and
  • Pedro Alpuim

Beilstein J. Nanotechnol. 2022, 13, 796–806, doi:10.3762/bjnano.13.70

Graphical Abstract
  • reliable transfer at a negligible contamination level, even without any post-treatment at high temperature. The supporting layer formed by spin coating presents high mechanical flexibility and strength for the transfer process and appears easy to dissolve afterward. We validated the impact of the optimized
PDF
Album
Supp Info
Full Research Paper
Published 18 Aug 2022

Experimental and theoretical study of field-dependent spin splitting at ferromagnetic insulator–superconductor interfaces

  • Peter Machon,
  • Michael J. Wolf,
  • Detlef Beckmann and
  • Wolfgang Belzig

Beilstein J. Nanotechnol. 2022, 13, 682–688, doi:10.3762/bjnano.13.60

Graphical Abstract
  • periodic in δφ and hence the maximum spin mixing is reached at δφ = π). For small ε’ or high temperature, the phase transition is of second order. For larger ε’ and low temperature, the phase transition becomes of first order. In this case, the self-consistency relation becomes multi-valued, and a
PDF
Album
Full Research Paper
Published 20 Jul 2022

Sodium doping in brookite TiO2 enhances its photocatalytic activity

  • Boxiang Zhuang,
  • Honglong Shi,
  • Honglei Zhang and
  • Zeqian Zhang

Beilstein J. Nanotechnol. 2022, 13, 599–609, doi:10.3762/bjnano.13.52

Graphical Abstract
  • enhance the photocatalytic activity [33][34]. However, the high temperature can improve the atomic migration rate which makes the atomic arrangement more ordered. In other words, the high temperature relaxes the lattice distortion and smoothen the incomplete structure while weakening the photocatalytic
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2022

Ethosomal (−)-epigallocatechin-3-gallate as a novel approach to enhance antioxidant, anti-collagenase and anti-elastase effects

  • Çiğdem Yücel,
  • Gökçe Şeker Karatoprak,
  • Sena Yalçıntaş and
  • Tuğba Eren Böncü

Beilstein J. Nanotechnol. 2022, 13, 491–502, doi:10.3762/bjnano.13.41

Graphical Abstract
  • study conducted by Gwak et al., the effect on the stability of ETHs developed to prevent the degradation of EGCG under different storage conditions was observed. The stability values of the solution and the ethosomal formulation of EGCG upon exposure to UV or high temperature were compared, and it was
PDF
Album
Full Research Paper
Published 31 May 2022

Electrostatic pull-in application in flexible devices: A review

  • Teng Cai,
  • Yuming Fang,
  • Yingli Fang,
  • Ruozhou Li,
  • Ying Yu and
  • Mingyang Huang

Beilstein J. Nanotechnol. 2022, 13, 390–403, doi:10.3762/bjnano.13.32

Graphical Abstract
  • increasing the electrode gap [54]. Due to the high voltage and the rapid local heating caused by the electrostatic discharge, the burning and melting electrode material will also affect the life cycles of the switch. Using AC voltage can reduce the need for high-temperature resistance of the electrodes. The
PDF
Album
Review
Published 12 Apr 2022

A broadband detector based on series YBCO grain boundary Josephson junctions

  • Egor I. Glushkov,
  • Alexander V. Chiginev,
  • Leonid S. Kuzmin and
  • Leonid S. Revin

Beilstein J. Nanotechnol. 2022, 13, 325–333, doi:10.3762/bjnano.13.27

Graphical Abstract
  • ; electromagnetic modeling; log-periodic antenna; RCSJ model; series Josephson junctions; YBaCuO Josephson junction; Introduction High-temperature superconducting (HTSC) Josephson junctions (JJs) have great potential as promising materials for creating high-frequency devices, such as microwave generators [1][2
PDF
Album
Full Research Paper
Published 28 Mar 2022

Engineered titania nanomaterials in advanced clinical applications

  • Padmavati Sahare,
  • Paulina Govea Alvarez,
  • Juan Manual Sanchez Yanez,
  • Gabriel Luna-Bárcenas,
  • Samik Chakraborty,
  • Sujay Paul and
  • Miriam Estevez

Beilstein J. Nanotechnol. 2022, 13, 201–218, doi:10.3762/bjnano.13.15

Graphical Abstract
  • direct route for both bandgap engineering and photoactivity enhancement. One strategy employed was high-pressure and high-temperature hydrogenation, resulting in reduced “black TiO2” (B-TiO2−x) nps with a crystalline center and a disordered surface that absorbs light in the visible range. Chen et al
PDF
Album
Review
Published 14 Feb 2022

Thermal oxidation process on Si(113)-(3 × 2) investigated using high-temperature scanning tunneling microscopy

  • Hiroya Tanaka,
  • Shinya Ohno,
  • Kazushi Miki and
  • Masatoshi Tanaka

Beilstein J. Nanotechnol. 2022, 13, 172–181, doi:10.3762/bjnano.13.12

Graphical Abstract
  • Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan 10.3762/bjnano.13.12 Abstract Thermal oxidation of Si(113) in a monolayer regime was investigated using high-temperature scanning tunneling microscopy (STM). Dynamic processes during thermal oxidation were examined in three
  • chamber with an STM apparatus (JEOL, JSTM-4500XT). The base pressure of the chamber equipped with the STM unit was kept at 5.0 × 10−9 Pa. For the high-temperature measurements, in order to make the temperature of the tip close to that of the sample, the STM tip was moved close (100 μm) to the sample and
PDF
Album
Supp Info
Full Research Paper
Published 03 Feb 2022
Other Beilstein-Institut Open Science Activities