Search results

Search for "hydrogen bonds" in Full Text gives 138 result(s) in Beilstein Journal of Nanotechnology.

Cyclodextrins as eminent constituents in nanoarchitectonics for drug delivery systems

  • Makoto Komiyama

Beilstein J. Nanotechnol. 2023, 14, 218–232, doi:10.3762/bjnano.14.21

Graphical Abstract
  • construct a variety of nanostructures. The cylindrical structures are stabilized by rings of intramolecular hydrogen bonds between adjacent glucose units. The internal diameters of the cavities of α-, β-, and γ-CyDs (composed of six, seven, and eight ᴅ-glucose units) are about 4.5–6, 6–8, and 8–9.5 Å
PDF
Album
Review
Published 09 Feb 2023

Atmospheric water harvesting using functionalized carbon nanocones

  • Fernanda R. Leivas and
  • Marcia C. Barbosa

Beilstein J. Nanotechnol. 2023, 14, 1–10, doi:10.3762/bjnano.14.1

Graphical Abstract
  • , after the flow ceases and the number of water molecules in the reservoir becomes constant. Note that these molecules and their hydrogen bonds are placed in a crystal-like arrangement. Figure 8a shows the radial distribution function, which is characteristic of an ordered structure in two dimensions
  • vapor for a hydrophobic nanocone (left), the number of collected water molecules as a function of the time (top right), and a 3D snapshot for t = 0.37 ns (bottom right). A snapshot of water molecules (red dots) on the attractive slab and hydrogen bonds (blue lines) at t = 0.5 ns. The central region is
  • where the nanocone is placed; we did not plot the molecules for this region. The hydrogen bonds were calculated using the distances and angles between water molecules. (a) Radial distribution function and (b) mean square displacement of the water molecules on the attractive slab at t = 0.5 ns and εr
PDF
Album
Full Research Paper
Published 02 Jan 2023

Non-stoichiometric magnetite as catalyst for the photocatalytic degradation of phenol and 2,6-dibromo-4-methylphenol – a new approach in water treatment

  • Joanna Kisała,
  • Anna Tomaszewska and
  • Przemysław Kolek

Beilstein J. Nanotechnol. 2022, 13, 1531–1540, doi:10.3762/bjnano.13.126

Graphical Abstract
  • . The distribution of species shows that only approximately 0.013 molecules of phenol will react with the protonated catalyst surface, while 0.888 molecules of DBMP could interact with the catalyst surface by Coulombic forces and a further 0.112 via hydrogen bonds. The apparent degradation rate constant
PDF
Album
Supp Info
Full Research Paper
Published 15 Dec 2022

Facile preparation of Au- and BODIPY-grafted lipid nanoparticles for synergized photothermal therapy

  • Yuran Wang,
  • Xudong Li,
  • Haijun Chen and
  • Yu Gao

Beilstein J. Nanotechnol. 2022, 13, 1432–1444, doi:10.3762/bjnano.13.118

Graphical Abstract
  • delivery systems through van der Waals forces, hydrogen bonds, π–π stacking, or electrostatic or hydrophobic interactions [24]. Several BODIPYs have been reported to be loaded into liposomes for cancer therapy [25]. Therefore, we speculated that BODIPY can be associated with our previously reported
PDF
Album
Full Research Paper
Published 02 Dec 2022

Design of surface nanostructures for chirality sensing based on quartz crystal microbalance

  • Yinglin Ma,
  • Xiangyun Xiao and
  • Qingmin Ji

Beilstein J. Nanotechnol. 2022, 13, 1201–1219, doi:10.3762/bjnano.13.100

Graphical Abstract
  • typical hydrogen bonds with the amino acid residues of SA molecules. Based on the QCM responses of naproxen (Nap) recognition on the BSA selector layer, Guo et al. studied the chiral adsorption forces by cyclic voltammograms (CVs) [33]. The result showed the formation of a larger electron transfer
  • structures formed by noncovalent intermolecular/intramolecular interactions of hydrogen bonds, electrostatic, van der Waals, and hydrophobic interactions [52][53][54]. As the construction concept is inspired by natural systems for molecular recognition, supermolecular-based nanostructures have attracted
PDF
Album
Review
Published 27 Oct 2022

Bioselectivity of silk protein-based materials and their bio-inspired applications

  • Hendrik Bargel,
  • Vanessa T. Trossmann,
  • Christoph Sommer and
  • Thomas Scheibel

Beilstein J. Nanotechnol. 2022, 13, 902–921, doi:10.3762/bjnano.13.81

Graphical Abstract
  • regular secondary structure within one type of silk allows for the condensed packing of protein, as well as the formation of hydrogen bonds, leading to tightly connected intra- and inter-protein chains [111]. While the crystalline regions exhibit a high hydrogen bond density accounting for the strength of
  • silk, poly-A and GA sequences in the spider dragline thread form nanocrystalline hydrophobic β-sheets aligned along the fibre axis, which are embedded in a matrix of more hydrophilic GGX and GPG(X)n regions responsible for helical and spring-like secondary structures with fewer hydrogen bonds and
PDF
Album
Review
Published 08 Sep 2022

Design and selection of peptides to block the SARS-CoV-2 receptor binding domain by molecular docking

  • Kendra Ramirez-Acosta,
  • Ivan A. Rosales-Fuerte,
  • J. Eduardo Perez-Sanchez,
  • Alfredo Nuñez-Rivera,
  • Josue Juarez and
  • Ruben D. Cadena-Nava

Beilstein J. Nanotechnol. 2022, 13, 699–711, doi:10.3762/bjnano.13.62

Graphical Abstract
  • , peptides with great affinity to the RBD were selected. The most common amino acids involved in the recognition of the RBD were identified to design novel peptides based on the number of hydrogen bonds that were formed. At physiological pH, these peptides are almost neutral and soluble in aqueous media
  • viruses. Keywords: angiotensin converting enzyme-2 (ACE2); antiviral peptides; hydrogen bonds; molecular docking; SARS-CoV-2 RBD; Introduction The current pandemic due to coronavirus disease-19 (COVID-19), caused by the novel virus SARS-CoV-2, has over 533 million of confirmed cases and over 6.3 million
  • of the most commonly used programs [16][17][21]. ADV provides theoretical information about hydrophobic interactions, electrostatic interactions, hydrogen bonds, and van der Waals interactions. It can also predict the binding pose and binding affinity [20]. Considering these important features, ADV
PDF
Album
Supp Info
Full Research Paper
Published 22 Jul 2022

Antibacterial activity of a berberine nanoformulation

  • Hue Thi Nguyen,
  • Tuyet Nhung Pham,
  • Anh-Tuan Le,
  • Nguyen Thanh Thuy,
  • Tran Quang Huy and
  • Thuy Thi Thu Nguyen

Beilstein J. Nanotechnol. 2022, 13, 641–652, doi:10.3762/bjnano.13.56

Graphical Abstract
  • spectra demonstrated that the solubility of BBR NPs was greatly enhanced compared to that of pure BBR. Glycerol played a role as a stabilizer for BBR NPs through the formation of hydrogen bonds between glycerol and BBR NPs. The prepared BBR NPs have a narrow size distribution with an average diameter of
  • explained by the formation of hydrogen bonds between the oxygen-containing groups (methoxy and furyl groups) of BBR and the –OH group of glycerol in water [38]. Morphology and size distribution of BBR NPs The SEM image (Figure 3a) shows that pure BBR forms tightly agglomerated rods with rectangular cross
  • solvent that possesses many hydroxy groups. The hydrogen atoms of these hydroxy groups and the oxygen atoms of methoxy and furyl groups of BBR form hydrogen bonds, which can effectively avoid the aggregation of BBR NPs. Therefore, glycerol acts as a stabilizer to improve the distribution and stability of
PDF
Album
Supp Info
Full Research Paper
Published 11 Jul 2022

Stimuli-responsive polypeptide nanogels for trypsin inhibition

  • Petr Šálek,
  • Jana Dvořáková,
  • Sviatoslav Hladysh,
  • Diana Oleshchuk,
  • Ewa Pavlova,
  • Jan Kučka and
  • Vladimír Proks

Beilstein J. Nanotechnol. 2022, 13, 538–548, doi:10.3762/bjnano.13.45

Graphical Abstract
  • network due to predominant polymer–medium interactions [27]. The subsequent increase of pH to 7.4 led to the decrease of DH of PHEG-Tyr nanogel to 131 nm driven by stronger polymer–polymer interactions including hydrophobic interactions and hydrogen bonds, leading to a shrinkage of the PHEG-Tyr nanogel
  • to the measurement at 25 °C as a result of the contribution from hydrophobic interactions and hydrogen bonds. However, it is important to note that the measurement was also affected by the broad particle size distribution of Nα-Lys-NG nanogel documented by the error bars in Figure 3a. PDI values
PDF
Album
Full Research Paper
Published 22 Jun 2022

Ciprofloxacin-loaded dissolving polymeric microneedles as a potential therapeutic for the treatment of S. aureus skin infections

  • Sharif Abdelghany,
  • Walhan Alshaer,
  • Yazan Al Thaher,
  • Maram Al Fawares,
  • Amal G. Al-Bakri,
  • Saja Zuriekat and
  • Randa SH. Mansour

Beilstein J. Nanotechnol. 2022, 13, 517–527, doi:10.3762/bjnano.13.43

Graphical Abstract
  • mechanical properties, many studies have shown better mechanical properties of PVA/PVP hydrogels [39][40][41]. In one study, the tensile strength of PVA hydrogel was increased by 133% after blending with less than 2% w/w PVP [42]. This is due to the formation of relatively strong hydrogen bonds between the
PDF
Album
Full Research Paper
Published 15 Jun 2022

Design and characterization of polymeric microneedles containing extracts of Brazilian green propolis

  • Camila Felix Vecchi,
  • Rafaela Said dos Santos,
  • Jéssica Bassi da Silva and
  • Marcos Luciano Bruschi

Beilstein J. Nanotechnol. 2022, 13, 503–516, doi:10.3762/bjnano.13.42

Graphical Abstract
  • yielded more malleable structures. Previous studies have shown that films containing PVA and propylene glycol are more malleable due to the breaking of hydrogen bonds by the effect of propylene glycol [34]. The factorial design chosen allowed us to evaluate the characteristics of the formulations
PDF
Album
Supp Info
Full Research Paper
Published 08 Jun 2022

The role of sulfonate groups and hydrogen bonding in the proton conductivity of two coordination networks

  • Ali Javed,
  • Felix Steinke,
  • Stephan Wöhlbrandt,
  • Hana Bunzen,
  • Norbert Stock and
  • Michael Tiemann

Beilstein J. Nanotechnol. 2022, 13, 437–443, doi:10.3762/bjnano.13.36

Graphical Abstract
  • the Pb-based metal-organic framework, in contrast, no extended hydrogen bonding occurs, as the sulfonate groups coordinate to Pb2+, without forming hydrogen bonds; the proton conductivity is much lower in this material. Keywords: coordination network; coordination polymer; impedance spectroscopy
  • ions, resulting in the formation of layers. This way, each phosphonate group is coordinating with two oxygen atoms, while the third one is protonated. The –C6H4-SO3 group points into the interlayer space. A network of hydrogen bonds between the sulfonate residues and coordinated water molecules as well
  • of covalent bonds and hydrogen bonds between adjacent molecules, without mass transport [25]. For bulk liquid water, this is known as the Grotthuß mechanism, with reported activation energy values of 0.10–0.11 eV [26][27]. In the materials studied here, proton hopping can occur between H2O/H3O+ and
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2022

Effect of sample treatment on the elastic modulus of locust cuticle obtained by nanoindentation

  • Chuchu Li,
  • Stanislav N. Gorb and
  • Hamed Rajabi

Beilstein J. Nanotechnol. 2022, 13, 404–410, doi:10.3762/bjnano.13.33

Graphical Abstract
  • rehydrated states. The elastic modulus of fibers, however, is affected by the density of effective hydrogen bonds (H-bonds) [18]. Addition or removal of water can presumably disrupt these structural H-bonds and, therefore, affect the elastic modulus of cuticle [15]. This effect, based on the results of our
PDF
Album
Full Research Paper
Published 22 Apr 2022

Engineered titania nanomaterials in advanced clinical applications

  • Padmavati Sahare,
  • Paulina Govea Alvarez,
  • Juan Manual Sanchez Yanez,
  • Gabriel Luna-Bárcenas,
  • Samik Chakraborty,
  • Sujay Paul and
  • Miriam Estevez

Beilstein J. Nanotechnol. 2022, 13, 201–218, doi:10.3762/bjnano.13.15

Graphical Abstract
  • hydroxy groups can react with water molecules. The thus formed hydrogen bonds account for a good wettability. An annealing temperature below 450 °C still retains the hydrophilic behavior because of the combined crystalline phase (anatase and rutile), but above that temperature, the reduction of the number
  • release of pharmaceuticals, nanotubular TiO2 can serve as a good candidate as the drug molecule near the surface of the nanotubes will be released quickly, which is called burst release. After that, the release profile will become slower as the drug molecules have to overcome hydrogen bonds and steric
PDF
Album
Review
Published 14 Feb 2022

Tin dioxide nanomaterial-based photocatalysts for nitrogen oxide oxidation: a review

  • Viet Van Pham,
  • Hong-Huy Tran,
  • Thao Kim Truong and
  • Thi Minh Cao

Beilstein J. Nanotechnol. 2022, 13, 96–113, doi:10.3762/bjnano.13.7

Graphical Abstract
  • study also indicated that hydrogen bonds between NO and PANI increased the adsorption of NO on the SnO2/PANI surface, leading to enhanced photocatalysis. However, the photocatalytic stability of SnO2/PANI is still a challenging problem. Enesca et al. [29] developed photoactive heterostructures based on
PDF
Album
Review
Published 21 Jan 2022

Morphology-driven gas sensing by fabricated fractals: A review

  • Vishal Kamathe and
  • Rupali Nagar

Beilstein J. Nanotechnol. 2021, 12, 1187–1208, doi:10.3762/bjnano.12.88

Graphical Abstract
PDF
Album
Supp Info
Review
Published 09 Nov 2021

Self-assembly of amino acids toward functional biomaterials

  • Huan Ren,
  • Lifang Wu,
  • Lina Tan,
  • Yanni Bao,
  • Yuchen Ma,
  • Yong Jin and
  • Qianli Zou

Beilstein J. Nanotechnol. 2021, 12, 1140–1150, doi:10.3762/bjnano.12.85

Graphical Abstract
  • -ordered structures from a complex mixture via noncovalent interactions, including van der Waals forces, electrostatic forces, hydrogen bonds, and stacking interactions [12][13]. Importantly, biomolecules, such as proteins, peptides, or biologically derived molecules, including de novo designed peptides or
  • and molecular forces play a key role in self-assembly, including hydrogen bonds, hydrophobic bonds, van der Waals force, ionic bonds, π–π stacking, and electrostatic forces [31]. Importantly, amino acids are simple building blocks that provide relevant noncovalent interactions to construct complex
  • phenylalanine to produce hydrogels driven by hydrogen bonds and π–π interactions and to form microfiber three-dimensional networks at 1 wt % and pH 7.4. The microfibers have AIE properties and strong blue emission under an ultraviolet lamp. Ni-terminated hydrogels of NI-Phe exhibit viscoelasticity with a
PDF
Album
Review
Published 12 Oct 2021

The role of deep eutectic solvents and carrageenan in synthesizing biocompatible anisotropic metal nanoparticles

  • Nabojit Das,
  • Akash Kumar and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2021, 12, 924–938, doi:10.3762/bjnano.12.69

Graphical Abstract
  • melting points, which interact via hydrogen bond to form a fluid at room temperature with a freezing temperature much below that of the individual precursor components. These strong hydrogen bonds restrict the recrystallization of the parent compounds [72]. There are numerous reports on DESs from various
PDF
Album
Review
Published 18 Aug 2021

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
PDF
Album
Review
Published 11 Aug 2021

Nanoporous and nonporous conjugated donor–acceptor polymer semiconductors for photocatalytic hydrogen production

  • Zhao-Qi Sheng,
  • Yu-Qin Xing,
  • Yan Chen,
  • Guang Zhang,
  • Shi-Yong Liu and
  • Long Chen

Beilstein J. Nanotechnol. 2021, 12, 607–623, doi:10.3762/bjnano.12.50

Graphical Abstract
  • polymers, heterojunctions between CPs and other semiconductors have also been developed to facilitate the intermolecular charge transfer and transport. The interactions between the CPs and various semiconductors in the heterojunctions could involve strong covalent bonds, ionic bonds, or hydrogen bonds [90
PDF
Album
Review
Published 30 Jun 2021

Surface-enhanced Raman scattering of water in aqueous dispersions of silver nanoparticles

  • Paulina Filipczak,
  • Krzysztof Hałagan,
  • Jacek Ulański and
  • Marcin Kozanecki

Beilstein J. Nanotechnol. 2021, 12, 497–506, doi:10.3762/bjnano.12.40

Graphical Abstract
  • of water molecules) and models of water as a mixture of discrete species (water clusters) [5][6][7][8]. It is difficult to choose between them because the spatial network of hydrogen bonds has features of both continuous and discrete models. The broad Raman band of water located in the range of 3000
  • . Irrespective of how the spectra are deconvoluted, all models of liquid water agree that the lower the frequency of the band, the stronger the hydrogen bonds and water structuration. The interactions with various solutes [17][18] and the influence of the temperature [13] on the water structure can be analysed
  • , which favours the presence of resonance. This indicates that OH oscillators of water molecules can reach the resonant state provided that they are strongly linked to each other via hydrogen bonds. All factors considered destructive to the hydrogen bond structure (e.g., temperature) make the resonance
PDF
Album
Supp Info
Full Research Paper
Published 25 May 2021

Cu2O nanoparticles for the degradation of methyl parathion

  • Juan Rizo,
  • David Díaz,
  • Benito Reyes-Trejo and
  • M. Josefina Arellano-Jiménez

Beilstein J. Nanotechnol. 2020, 11, 1546–1555, doi:10.3762/bjnano.11.137

Graphical Abstract
  • found on its surface (see XPS results below). These surface hydroxy groups can either be directly involved in the SN2@P mechanism or they can polarize the oxygen–hydrogen bonds of the water molecules and thus facilitate the hydrolysis of MP. Further research regarding the exact mechanism for the
PDF
Album
Full Research Paper
Published 12 Oct 2020

Key for crossing the BBB with nanoparticles: the rational design

  • Sonia M. Lombardo,
  • Marc Schneider,
  • Akif E. Türeli and
  • Nazende Günday Türeli

Beilstein J. Nanotechnol. 2020, 11, 866–883, doi:10.3762/bjnano.11.72

Graphical Abstract
  • paracellular pathway of hydrophilic molecules. Therefore, most molecules have to go through the transcellular pathway to cross the BBB. However, only small lipophilic molecules, with a molecular weight lower than 400 Da and less than eight hydrogen bonds, or small gas molecules (such as CO2 or O2) can freely
PDF
Album
Review
Published 04 Jun 2020

A novel dry-blending method to reduce the coefficient of thermal expansion of polymer templates for OTFT electrodes

  • Xiangdong Ye,
  • Bo Tian,
  • Yuxuan Guo,
  • Fan Fan and
  • Anjiang Cai

Beilstein J. Nanotechnol. 2020, 11, 671–677, doi:10.3762/bjnano.11.53

Graphical Abstract
  • to 96 ppm/°C. This decrease is mainly attributed to two factors. First, the CTE of SiO2 is only 0.54 ppm/°C [12]. The higher content of SiO2 nanoparticles with a low CTE, the greater the influence on the CTE of PDMS. Second, covalent bonds are formed between SiO2 nanoparticles and PDMS and hydrogen
  • bonds are formed between SiO2 nanoparticles [14][21]. The higher content of SiO2 nanoparticles, the greater the interaction among the bonds between PDMS and SiO2 nanoparticles. This restricts the thermal deformation of PDMS. Hence, the CTE of the PDMS/SiO2 composite template significantly decreases. To
PDF
Album
Full Research Paper
Published 20 Apr 2020

Identification of physicochemical properties that modulate nanoparticle aggregation in blood

  • Ludovica Soddu,
  • Duong N. Trinh,
  • Eimear Dunne,
  • Dermot Kenny,
  • Giorgia Bernardini,
  • Ida Kokalari,
  • Arianna Marucco,
  • Marco P. Monopoli and
  • Ivana Fenoglio

Beilstein J. Nanotechnol. 2020, 11, 550–567, doi:10.3762/bjnano.11.44

Graphical Abstract
  • groups/nm2 [31][32]. Both surfaces exhibit surface sites able to form hydrogen bonds or hydrophobic interaction with proteins. However, such tendency may be different since hydrogen bond formation obeys geometrical constraints due to the directional character of this bond. On the other hand, both silica
PDF
Album
Supp Info
Full Research Paper
Published 03 Apr 2020
Other Beilstein-Institut Open Science Activities