Search results

Search for "nanocarriers" in Full Text gives 68 result(s) in Beilstein Journal of Nanotechnology.

Recent progress in cancer cell membrane-based nanoparticles for biomedical applications

  • Qixiong Lin,
  • Yueyou Peng,
  • Yanyan Wen,
  • Xiaoqiong Li,
  • Donglian Du,
  • Weibin Dai,
  • Wei Tian and
  • Yanfeng Meng

Beilstein J. Nanotechnol. 2023, 14, 262–279, doi:10.3762/bjnano.14.24

Graphical Abstract
  • (NIR) radiation to ablate cells or trigger the release of related therapeutic drugs [94][96]. PTT is characterized by noninvasiveness, deep tissue penetration, and high anticancer efficiency, showing good prospects in clinical treatment [97]. Biomimetic NPs of mesoporous polydopamine nanocarriers have
  • targeting and hyperthermia [56]. In a therapeutic strategy for HCC, hepatoma cell membranes and macrophage membranes were hybridized to obtain the advantages of different cell membranes [78]. When nanocarriers with photothermal conversion ability were used to carry the anticancer drug sorafenib, efficient
  • nanocarrier was encapsulated with a cancer cell membrane, which endowed the NPs with the ability to target tumor tissues and mediate tumor killing through chemical kinetics [83]. In addition, further anticancer effects can be exerted by the ginsenoside Rh2, which was delivered by nanocarriers and inhibited
PDF
Album
Review
Published 27 Feb 2023

Nanotechnology – a robust tool for fighting the challenges of drug resistance in non-small cell lung cancer

  • Filip Gorachinov,
  • Fatima Mraiche,
  • Diala Alhaj Moustafa,
  • Ola Hishari,
  • Yomna Ismail,
  • Jensa Joseph,
  • Maja Simonoska Crcarevska,
  • Marija Glavas Dodov,
  • Nikola Geskovski and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2023, 14, 240–261, doi:10.3762/bjnano.14.23

Graphical Abstract
  • agents. Precision oncology research to identify targetable biomarkers and optimize tumor homing agents, hand in hand with designing multifunctional and multistage nanocarriers that respond to the inherent heterogeneity of the tumors, may resolve the challenges of inadequate tumor localization, improve
  • intracellular internalization, and bring advantages over conventional nanocarriers. Keywords: co-delivery nanoparticles; combinatorial therapy; EGFR TKI resistance; non-small cell lung cancer (NSCLC); overcoming and preventing resistance; Introduction Among the malignant diseases, lung cancer takes the lead
  • targeting motifs, multifunctional and multistage nanomicelles and polymer nanoparticles, and nanostructured lipid nanocarriers, combined with precision oncology research to identify additional targetable biomarkers, have emerged. Some have been applied in the co-delivery of clinically relevant combinations
PDF
Album
Review
Published 22 Feb 2023

Antibacterial activity of a berberine nanoformulation

  • Hue Thi Nguyen,
  • Tuyet Nhung Pham,
  • Anh-Tuan Le,
  • Nguyen Thanh Thuy,
  • Tran Quang Huy and
  • Thuy Thi Thu Nguyen

Beilstein J. Nanotechnol. 2022, 13, 641–652, doi:10.3762/bjnano.13.56

Graphical Abstract
  • batch-to-batch variations [33]. Also, non-biodegradability and long-term toxicity are limitations of inorganic nanocarriers [34]. The purpose of this study was to fabricate BBR nanoparticles (BBR NPs) without using any nanocarriers, thus reducing production cost, increasing the drug concentration, and
PDF
Album
Supp Info
Full Research Paper
Published 11 Jul 2022

Design and characterization of polymeric microneedles containing extracts of Brazilian green propolis

  • Camila Felix Vecchi,
  • Rafaela Said dos Santos,
  • Jéssica Bassi da Silva and
  • Marcos Luciano Bruschi

Beilstein J. Nanotechnol. 2022, 13, 503–516, doi:10.3762/bjnano.13.42

Graphical Abstract
  • permeation mechanism [6][9][10]. Nanocarriers can be used together with polymeric MNs in a synergistic therapy. The nanocarriers can immediately come into contact with the stratum corneum with the help of polymeric MNs, enhancing the transdermal drug delivery of the drugs. Furthermore, these polymeric MNs
  • can encapsulate several types of nanocarriers, making it a unique system with different activities [11]. Solid MNs are used for pre-treatment of the skin. They serve only to create micropores, increasing permeability and facilitating the administration of the drug. The drug will be inserted over the
PDF
Album
Supp Info
Full Research Paper
Published 08 Jun 2022

Ethosomal (−)-epigallocatechin-3-gallate as a novel approach to enhance antioxidant, anti-collagenase and anti-elastase effects

  • Çiğdem Yücel,
  • Gökçe Şeker Karatoprak,
  • Sena Yalçıntaş and
  • Tuğba Eren Böncü

Beilstein J. Nanotechnol. 2022, 13, 491–502, doi:10.3762/bjnano.13.41

Graphical Abstract
  • they contain sufficient water content in their structure [9]. In the literature, there is only one review study of nanocarriers in which ETHs, developed with natural compounds/plant extracts, are used in the field of cosmetics. In that study, information is given about the use of ETHs developed with
PDF
Album
Full Research Paper
Published 31 May 2022

Systematic studies into uniform synthetic protein nanoparticles

  • Nahal Habibi,
  • Ava Mauser,
  • Jeffery E. Raymond and
  • Joerg Lahann

Beilstein J. Nanotechnol. 2022, 13, 274–283, doi:10.3762/bjnano.13.22

Graphical Abstract
  • nanoparticle platforms for drug delivery transition from novelties to foundational biomedical technologies [1][2][3], it is critical to augment the existing strategies with precisely engineered nanocarriers that are better equipped to maneuver the host of barriers that exist in clinical translation [4][5
  • –circularity (7.9), but appear to have very little in common with INS (0.1). The diameter–roundness relationship of INS/HSA SPNPs is a combination of the factors observed in HSA (3.6) and INS (3.5). Conclusion In this work, we expand the conceptual framework of SPNP nanocarriers in a systematic way, while
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2022

Biocompatibility and cytotoxicity in vitro of surface-functionalized drug-loaded spinel ferrite nanoparticles

  • Sadaf Mushtaq,
  • Khuram Shahzad,
  • Tariq Saeed,
  • Anwar Ul-Hamid,
  • Bilal Haider Abbasi,
  • Nafees Ahmad,
  • Waqas Khalid,
  • Muhammad Atif,
  • Zulqurnain Ali and
  • Rashda Abbasi

Beilstein J. Nanotechnol. 2021, 12, 1339–1364, doi:10.3762/bjnano.12.99

Graphical Abstract
  • spheroid diameter and up to 74 ± 8.9% of cell death after two weeks. In addition, they also inhibited multidrug resistance (MDR) pump activity in both cell lines suggesting effectivity in MDR cancers. Among the tested MFe2O4 NPs, CFO nanocarriers were the most favorable for targeted cancer therapy due to
  • excellent magnetic, colloidal, cytotoxic, and biocompatible aspects. However, detailed mechanistic, in vivo cytotoxicity, and magnetic-field-assisted studies are required to fully exploit these nanocarriers in therapeutic applications. Keywords: anticancer drugs; doxorubicin; drug carriers; in vitro
  • side effects of conventional therapeutic agents [4]. Functionalized nanoparticles have the potential to improve the therapeutic performance of drugs by regulating pharmacokinetics and pharmacodynamics [5]. Moreover, water compatibility of nanocarriers provides better chemical stability and
PDF
Album
Full Research Paper
Published 02 Dec 2021

Identifying diverse metal oxide nanomaterials with lethal effects on embryonic zebrafish using machine learning

  • Richard Liam Marchese Robinson,
  • Haralambos Sarimveis,
  • Philip Doganis,
  • Xiaodong Jia,
  • Marianna Kotzabasaki,
  • Christiana Gousiadou,
  • Stacey Lynn Harper and
  • Terry Wilkins

Beilstein J. Nanotechnol. 2021, 12, 1297–1325, doi:10.3762/bjnano.12.97

Graphical Abstract
  • ; Introduction A variety of nanomaterial (NM)-enabled products have already been marketed [1][2] and there is considerable interest in the development of novel engineered nanomaterials (ENMs) for a variety of applications. Nanomedicine, including ENM-based therapeutic agents, nanocarriers (i.e., targeted drug
PDF
Album
Supp Info
Full Research Paper
Published 29 Nov 2021

Use of nanosystems to improve the anticancer effects of curcumin

  • Andrea M. Araya-Sibaja,
  • Norma J. Salazar-López,
  • Krissia Wilhelm Romero,
  • José R. Vega-Baudrit,
  • J. Abraham Domínguez-Avila,
  • Carlos A. Velázquez Contreras,
  • Ramón E. Robles-Zepeda,
  • Mirtha Navarro-Hoyos and
  • Gustavo A. González-Aguilar

Beilstein J. Nanotechnol. 2021, 12, 1047–1062, doi:10.3762/bjnano.12.78

Graphical Abstract
  • internalization, as compared to conventional therapies, potentially increasing therapeutic efficacy and minimizing side effects [4]. Nanosystems can be referred to as nanocarriers, nanoformulations, nanosized-delivery systems, and other similar terms. They have been utilized in the design of cellular and
  • respond to various external stimuli such as light [125], magnetic fields [126], ultrasound [127] and electric fields [128], or magnetic nanocarriers that respond to changes in pH by increasing the selectivity of the release site [129]. Magnetic nanoparticles (MNP). Magnetic nanoparticles contain molecules
PDF
Album
Review
Published 15 Sep 2021

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
PDF
Album
Review
Published 11 Aug 2021

Doxorubicin-loaded gold nanorods: a multifunctional chemo-photothermal nanoplatform for cancer management

  • Uzma Azeem Awan,
  • Abida Raza,
  • Shaukat Ali,
  • Rida Fatima Saeed and
  • Nosheen Akhtar

Beilstein J. Nanotechnol. 2021, 12, 295–303, doi:10.3762/bjnano.12.24

Graphical Abstract
  • site [11]. Nanotechnology provides a means to overcome these hurdles as nanocarriers, which improve the pharmacological properties of free drugs, contribute to enhanced therapeutic efficacy in physiological environment [12]. Nanocarriers as multifunctional tumor targeting and therapeutic agents exhibit
  • may be responsible for the laser-triggered release of DOX. These findings are consistent with previous studies [23]. PSS-GNRs nanocomplex biocompatibility Dose-dependent biocompatibility and cytotoxicity efficiency of the nanocarriers were measured in vitro. The efficiency of the GNRs in mediating
  • biocompatibility of nanocarriers [23]. Analysis of hemoglobin released from RBCs after incubation in a suspension of PSS-GNRs showed less than 20% hemolysis at a concentration of 1000 μg/mL (Figure 4b). The experiments revealed a good biocompatibility of PSS-GNRs, which was quantified by the concentration of
PDF
Album
Full Research Paper
Published 31 Mar 2021

Differences in surface chemistry of iron oxide nanoparticles result in different routes of internalization

  • Barbora Svitkova,
  • Vlasta Zavisova,
  • Veronika Nemethova,
  • Martina Koneracka,
  • Miroslava Kretova,
  • Filip Razga,
  • Monika Ursinyova and
  • Alena Gabelova

Beilstein J. Nanotechnol. 2021, 12, 270–281, doi:10.3762/bjnano.12.22

Graphical Abstract
  • surface charge), cell membrane properties (fluidity, type of receptors, and receptor density), and cell type [30][31][32]. For biomedical applications, the optimal size of nanocarriers is in the range of 95–200 nm because of the higher accumulation rate in tumors [33][34]. Spherical nanoparticles (NPs) in
PDF
Album
Supp Info
Full Research Paper
Published 23 Mar 2021

PEG/PEI-functionalized single-walled carbon nanotubes as delivery carriers for doxorubicin: synthesis, characterization, and in vitro evaluation

  • Shuoye Yang,
  • Zhenwei Wang,
  • Yahong Ping,
  • Yuying Miao,
  • Yongmei Xiao,
  • Lingbo Qu,
  • Lu Zhang,
  • Yuansen Hu and
  • Jinshui Wang

Beilstein J. Nanotechnol. 2020, 11, 1728–1741, doi:10.3762/bjnano.11.155

Graphical Abstract
  • . In this study, raw SWCNTs were purified with different oxidizing acids, and the resulting shortened CNTs were conjugated with poly(ethylene glycol) (PEG) and polyethylenimine (PEI). The different nanocarriers, that is, CNTs-COOH (CNTs), CNTs-PEG and CNTs-PEG-PEI, were systematically characterized and
  • attributed to their good dispersibility and comparably higher affinity to tumor cells due to the difunctionalization. In summary, the PEG- and PEI-conjugated CNTs may be used as novel nanocarriers and the findings will contribute to the rational design of multifunctional delivery vehicles for anticancer
  • functionalization was supposed to attenuate the premature removal and loss of nanocarriers, and also to improve the targeting to the tumor site. The physical and chemical properties of CNTs-PEG-PEI were systematically characterized and doxorubicin (DOX), one of the most potent anticancer drugs applied in
PDF
Album
Full Research Paper
Published 13 Nov 2020

Applications of superparamagnetic iron oxide nanoparticles in drug and therapeutic delivery, and biotechnological advancements

  • Maria Suciu,
  • Corina M. Ionescu,
  • Alexandra Ciorita,
  • Septimiu C. Tripon,
  • Dragos Nica,
  • Hani Al-Salami and
  • Lucian Barbu-Tudoran

Beilstein J. Nanotechnol. 2020, 11, 1092–1109, doi:10.3762/bjnano.11.94

Graphical Abstract
  • infiltrated these macrophages in spheroids of tumor cells and destroyed the cells by hyperthermia in vitro [125]. Moghimi et al. [124] found that liposomes and polymeric nanospheres used as nanocarriers are also opsonized, which promotes their clearance by macrophage activation. The opsonization also leads to
PDF
Album
Review
Published 27 Jul 2020

Key for crossing the BBB with nanoparticles: the rational design

  • Sonia M. Lombardo,
  • Marc Schneider,
  • Akif E. Türeli and
  • Nazende Günday Türeli

Beilstein J. Nanotechnol. 2020, 11, 866–883, doi:10.3762/bjnano.11.72

Graphical Abstract
  • surgery and are therefore highly invasive. They are mostly used to treat glioblastomas or other brain tumors. Another way to reach the brain by bypassing the BBB is the intranasal route. After reaching the nasal cavity, a drug loaded inside nanocarriers can be transported along the olfactory bulb
PDF
Album
Review
Published 04 Jun 2020

Luminescent gold nanoclusters for bioimaging applications

  • Nonappa

Beilstein J. Nanotechnol. 2020, 11, 533–546, doi:10.3762/bjnano.11.42

Graphical Abstract
  • –nanocluster agglomerates as luminescent nanocarriers for imaging and combination therapy [89][90]. Core–shell nanoparticles consisting of oleic acid-capped superparamagnetic iron oxide nanoparticles (IONPs, d = 6.7 ± 1.2 nm) were used (Figure 5A). The IONPs were subsequently coated with a gold shell using the
  • , HeLa, HepG2 and A375, as well as a normal HEK cell line (Figure 5B). Confocal imaging confirmed the internalization of the nanocarriers. After incubating the cell lines with sodium azide, there was a decrease by 82% of uptake of the nanocarriers, suggesting that the internalization is through
  • endocytosis. The superparamagnetic nature of the PML-MF allowed for the magnetic targeting of the nanocarriers. Further, the ability of BSA to encapsulate drug molecules was explored to load doxorubicin (DPML-MF) in the nanocarriers. The release kinetics of doxorubicin studied at pH 7.4 and 4.4 were found to
PDF
Album
Review
Published 30 Mar 2020

Brome mosaic virus-like particles as siRNA nanocarriers for biomedical purposes

  • Alfredo Nuñez-Rivera,
  • Pierrick G. J. Fournier,
  • Danna L. Arellano,
  • Ana G. Rodriguez-Hernandez,
  • Rafael Vazquez-Duhalt and
  • Ruben D. Cadena-Nava

Beilstein J. Nanotechnol. 2020, 11, 372–382, doi:10.3762/bjnano.11.28

Graphical Abstract
  • virus (CCMV) are novel potential nanocarriers for different therapies in nanomedicine. In this work, BMV and CCMV were loaded with a fluorophore and assayed on breast tumor cells. The viruses BMV and CCMV were internalized into breast tumor cells. Both viruses, BMV and CCMV, did not show cytotoxic
  • chlorotic mottle virus (CCMV); nanocarriers; plant virus-like particles (VLPs); siRNA delivery; small interfering RNA (siRNA); Introduction Despite many efforts taken, the efficient and specific delivery of therapeutic molecules to tumor cells is still a unsolved challenge. Cancer therapies are often
  • properties of biomedical interest are demonstrated, such as biocompatibility, tumor cell internalization, and their efficiency as nanocarriers for siRNA delivery. In addition, the capacity of the BMV and CCMV viruses to modulate the immune response in vitro was also analyzed. Results and Discussion Cell
PDF
Album
Supp Info
Full Research Paper
Published 20 Feb 2020

Interactions at the cell membrane and pathways of internalization of nano-sized materials for nanomedicine

  • Valentina Francia,
  • Daphne Montizaan and
  • Anna Salvati

Beilstein J. Nanotechnol. 2020, 11, 338–353, doi:10.3762/bjnano.11.25

Graphical Abstract
  • corresponding receptors [23][24], or hyaluronic acid, which directs nanocarriers to CD44-overexpressing tumour cells [25], among many others. While many new targeted nanomedicines are developed, just few of them are currently present on the market [6]. In fact, achieving efficient targeting in vivo remains a
PDF
Album
Review
Published 14 Feb 2020

Rational design of block copolymer self-assemblies in photodynamic therapy

  • Maxime Demazeau,
  • Laure Gibot,
  • Anne-Françoise Mingotaud,
  • Patricia Vicendo,
  • Clément Roux and
  • Barbara Lonetti

Beilstein J. Nanotechnol. 2020, 11, 180–212, doi:10.3762/bjnano.11.15

Graphical Abstract
  • , exploiting only the size of the therapeutics, and is usually referred to as passive targeting. At that time, researchers got on the lead to develop intravenous nanocarriers of appropriate size (typically 20–200 nm) to benefit from this EPR effect without being cleared too rapidly through kidneys [4]. This
  • implied a required blood circulation time of at least 24–48 h, which is the time necessary for the EPR effect to occur [5]. However, the first nanocarriers were observed to be rapidly cleared from the body or accumulated in the liver or the spleen [4]. The reason was that they were detected as foreign
  • parallel to this development of stealth nanocarriers, polymer chemistry had progressed strongly with the emergence of controlled polymerization. After the discovery of so-called living polymerization (polymerization without any transfer nor any termination reaction) in the 1950’s, the development of
PDF
Album
Review
Published 15 Jan 2020

Internalization mechanisms of cell-penetrating peptides

  • Ivana Ruseska and
  • Andreas Zimmer

Beilstein J. Nanotechnol. 2020, 11, 101–123, doi:10.3762/bjnano.11.10

Graphical Abstract
  • differentiation. However, when it comes to the internalization of nanocarriers such as CPPs, their physicochemical properties and surface reactivates are also important [54]. It is now generally recognized that CPPs at low concentration, and when conjugated to cargo, are taken up by cells in an energy-dependent
PDF
Album
Review
Published 09 Jan 2020

The different ways to chitosan/hyaluronic acid nanoparticles: templated vs direct complexation. Influence of particle preparation on morphology, cell uptake and silencing efficiency

  • Arianna Gennari,
  • Julio M. Rios de la Rosa,
  • Erwin Hohn,
  • Maria Pelliccia,
  • Enrique Lallana,
  • Roberto Donno,
  • Annalisa Tirella and
  • Nicola Tirelli

Beilstein J. Nanotechnol. 2019, 10, 2594–2608, doi:10.3762/bjnano.10.250

Graphical Abstract
  • -based cationic nanocarriers [40][41]. Next, we analysed the nanoparticle uptake in the two cell lines for up to 24 h; we tracked the fluorescence associated to nanoparticles in cell lysates, which accounts for both membrane-bound and internalized materials [10]. We used fluorescently labelled chitosan
PDF
Album
Supp Info
Full Research Paper
Published 30 Dec 2019

Advanced hybrid nanomaterials

  • Andreas Taubert,
  • Fabrice Leroux,
  • Pierre Rabu and
  • Verónica de Zea Bermudez

Beilstein J. Nanotechnol. 2019, 10, 2563–2567, doi:10.3762/bjnano.10.247

Graphical Abstract
  • -art, as well as potential further developments, are reviewed in “Targeting strategies for improving the efficacy of nanomedicine in oncology” [32]. Nanocarriers for drugs were also decorated with suitable moieties to tune their affinity with specific biological membranes. More sophisticated strategies
PDF
Editorial
Published 20 Dec 2019

Bombesin receptor-targeted liposomes for enhanced delivery to lung cancer cells

  • Mohammad J. Akbar,
  • Pâmela C. Lukasewicz Ferreira,
  • Melania Giorgetti,
  • Leanne Stokes and
  • Christopher J. Morris

Beilstein J. Nanotechnol. 2019, 10, 2553–2562, doi:10.3762/bjnano.10.246

Graphical Abstract
  • , leading to accumulation of nanocarriers in the tumour. A diversity of targeting ligands has been explored, including antibodies, proteins, peptides and aptamers. Targeted nanoparticles such as HER2-targeted MM-302 [14], transferrin receptor-targeted CALAA-01 [15], and prostate-specific membrane antigen
  • these nanocarriers, particularly with regards to their efficiency of carrying chemotherapeutic agents into the cell. Poor intracellular accumulation of nanocarriers can be improved through targeted and triggered drug release, for example through the incorporation of temperature-sensitive [32] or light
PDF
Album
Full Research Paper
Published 19 Dec 2019

Frontiers in pharmaceutical nanotechnology

  • Matthias G. Wacker

Beilstein J. Nanotechnol. 2019, 10, 2538–2540, doi:10.3762/bjnano.10.244

Graphical Abstract
  • Matthias G. Wacker National University of Singapore, Faculty of Science, Department of Pharmacy, 6 Science Drive 2, 117546 Singapore 10.3762/bjnano.10.244 Keywords: drug delivery; nanocarriers; nanomedicines; nanotheranostics; pharmaceutical nanotechnology; Today, pharmaceutical nanotechnology
PDF
Editorial
Published 17 Dec 2019

pH-Controlled fluorescence switching in water-dispersed polymer brushes grafted to modified boron nitride nanotubes for cellular imaging

  • Saban Kalay,
  • Yurij Stetsyshyn,
  • Volodymyr Donchak,
  • Khrystyna Harhay,
  • Ostap Lishchynskyi,
  • Halyna Ohar,
  • Yuriy Panchenko,
  • Stanislav Voronov and
  • Mustafa Çulha

Beilstein J. Nanotechnol. 2019, 10, 2428–2439, doi:10.3762/bjnano.10.233

Graphical Abstract
  • potentially be used not only for cellular imaging but also as “smart” surfaces, nanotransducers and nanocarriers. Experimental Materials Pyridine and other organic solvents were purified as reported by Riddick et al. [46]. Poly(ethylene glycol) (PEG-9) was supplied by Merck Chemical Co.; acrylic acid and
  • )-functionalized BNNTs is excellent and they can potentially be used in biomedical applications. We plan to continue to explore this new hybrid in our future studies not only as a pH-switchable label but also as “smart” surfaces and nanocarriers. Conclusion pH-Switchable, fluorescent, hybrid, water-dispersed
  • great potential in biomedical applications as “smart” surfaces, nanocarriers and fluorescent labels. Suspensions of native BNNTs (a) and P(AA-co-FA)-functionalized BNNTs (b) obtained at a concentration of 1 mg/mL in distilled water after 2 min of sonic bath treatment. TGA curves of pristine BNNTs (a
PDF
Album
Supp Info
Full Research Paper
Published 10 Dec 2019
Other Beilstein-Institut Open Science Activities