Search results

Search for "nanomedicines" in Full Text gives 30 result(s) in Beilstein Journal of Nanotechnology.

Development of polycationic amphiphilic cyclodextrin nanoparticles for anticancer drug delivery

  • Gamze Varan,
  • Juan M. Benito,
  • Carmen Ortiz Mellet and
  • Erem Bilensoy

Beilstein J. Nanotechnol. 2017, 8, 1457–1468, doi:10.3762/bjnano.8.145

Graphical Abstract
  • prepared with ethanol and without any surfactant (PF68). Delivering the therapeutic load to the target site and maintaining therapeutic blood levels for the drug in an effective dose is the most important objective for targeted nanomedicines. Drug encapsulation efficiency is highly affected by the nature
PDF
Album
Full Research Paper
Published 13 Jul 2017

Cationic PEGylated polycaprolactone nanoparticles carrying post-operation docetaxel for glioma treatment

  • Cem Varan and
  • Erem Bilensoy

Beilstein J. Nanotechnol. 2017, 8, 1446–1456, doi:10.3762/bjnano.8.144

Graphical Abstract
  • [42], which contribute to the potential of this biopolymer for drug delivery and formulation. Although systemic application is frequently preferred for nanomedicines, local administration is a major opportunity when on-site therapy is possible and intended for. In fact, local or implantable
PDF
Album
Full Research Paper
Published 12 Jul 2017

Low uptake of silica nanoparticles in Caco-2 intestinal epithelial barriers

  • Dong Ye,
  • Mattia Bramini,
  • Delyan R. Hristov,
  • Sha Wan,
  • Anna Salvati,
  • Christoffer Åberg and
  • Kenneth A. Dawson

Beilstein J. Nanotechnol. 2017, 8, 1396–1406, doi:10.3762/bjnano.8.141

Graphical Abstract
  • Deusinglaan 1, 9713 AV Groningen, The Netherlands 10.3762/bjnano.8.141 Abstract Cellular barriers, such as the skin, the lung epithelium or the intestinal epithelium, constitute one of the first obstacles facing nanomedicines or other nanoparticles entering organisms. It is thus important to assess the
  • exposure routes, cellular barriers, such as the skin, the lung epithelium, the intestinal epithelium or the endothelium (including the blood-brain barrier), constitute one of the first sites of interactions of nanoparticles, whether intended as nanomedicines or not, with organisms. Thus in addressing the
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2017

Experiences in supporting the structured collection of cancer nanotechnology data using caNanoLab

  • Stephanie A. Morris,
  • Sharon Gaheen,
  • Michal Lijowski,
  • Mervi Heiskanen and
  • Juli Klemm

Beilstein J. Nanotechnol. 2015, 6, 1580–1593, doi:10.3762/bjnano.6.161

Graphical Abstract
  • ]. caNanoLab was originally designed to capture information about the nanomaterial sample and its composition, associated in vitro characterizations, experimental protocols, and relevant publications. The ultimate goal being to accelerate the clinical use of cancer nanomedicines by providing efficacy and
  • nanomedicines to the clinical environment. To aid this process, caNanoLab will continue to evolve as a valuable resource to the biomedical nanotechnology community through portal enhancements and through integration with other community-identified resources. Plans are underway for a caNanoLab 2.1 release, which
PDF
Album
Full Research Paper
Published 21 Jul 2015

Using natural language processing techniques to inform research on nanotechnology

  • Nastassja A. Lewinski and
  • Bridget T. McInnes

Beilstein J. Nanotechnol. 2015, 6, 1439–1449, doi:10.3762/bjnano.6.149

Graphical Abstract
  • field. However, its impact is already realized with engineered nanomaterials (ENMs) incorporated in over 1800 consumer products, included in over 100 clinical trials, and contained in 40 FDA approved nanomedicines [1][2][3]. At the onset of the U.S. National Nanotechnology Initiative, researchers
  • nanomedicines have successfully advanced from the bench to the clinic. For both developing and marketed nanomedicines, there still remain questions on the long-term safety. Two groups have developed NLP-based systems to annotate and classify nanomedicine articles or clinical trials. Nanotoxicity Searcher The
  • 500 were nanomedicine-focused (nano) and 500 were not involving any nanomedicines or nanodevices (non-nano). The author evaluated their system using the leave-one-out and 10-fold cross validation evaluation methodology and report the overall: (1) precision, (2) recall, (3) F-measure, (3) true-positive
PDF
Review
Published 01 Jul 2015
Other Beilstein-Institut Open Science Activities