Search results

Search for "nanotubes" in Full Text gives 453 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Fragmentation of metal(II) bis(acetylacetonate) complexes induced by slow electrons

  • Janina Kopyra and
  • Hassan Abdoul-Carime

Beilstein J. Nanotechnol. 2023, 14, 980–987, doi:10.3762/bjnano.14.81

Graphical Abstract
  • . Metal bis(acetylacetonate) complexes are of interest for many thin film fabrication techniques (e.g., chemical vapor deposition [9], atomic layer epitaxy [10], or atomic layer etching [11]) and as precursors for carbon materials, such as carbon nanotubes and carbon onion particles [12], or metal oxide
PDF
Album
Full Research Paper
Published 26 Sep 2023

Metal-organic framework-based nanomaterials for CO2 storage: A review

  • Ha Huu Do,
  • Iqra Rabani and
  • Hai Bang Truong

Beilstein J. Nanotechnol. 2023, 14, 964–970, doi:10.3762/bjnano.14.79

Graphical Abstract
  • et al. fabricated various composites of Cr- and Cu-based nanosized MOFs and multiwalled carbon nanotubes (MWCNTs) [39]. The authors found that the amount of absorbed CO2 increased significantly by 64% (at 298 K and 18 bar) for MIL-100(Cr) following modification. Similarly, for Cu3(BTC)2, there was a
PDF
Album
Review
Published 20 Sep 2023

Prediction of cytotoxicity of heavy metals adsorbed on nano-TiO2 with periodic table descriptors using machine learning approaches

  • Joyita Roy,
  • Souvik Pore and
  • Kunal Roy

Beilstein J. Nanotechnol. 2023, 14, 939–950, doi:10.3762/bjnano.14.77

Graphical Abstract
  • derivatives [15], 51 manufactured nanoparticles with varying core metals, coatings, and surface attachments [16], and 80 surface-modified multiwall carbon nanotubes have been reported. Another approach, namely nano-read-across (nano-RA) [17], has been used to determine the cytotoxicity of unknown
PDF
Album
Supp Info
Full Research Paper
Published 12 Sep 2023

Ni, Co, Zn, and Cu metal-organic framework-based nanomaterials for electrochemical reduction of CO2: A review

  • Ha Huu Do and
  • Hai Bang Truong

Beilstein J. Nanotechnol. 2023, 14, 904–911, doi:10.3762/bjnano.14.74

Graphical Abstract
  • low conductivity of MOFs hampers electron transport, leading to sluggish electrochemical reaction kinetics. To alleviate this problem, highly conductive materials such as graphene, and carbon nanotubes were combined with MOFs to improve overall conductivity. Additionally, the usage of pristine MOFs as
PDF
Album
Review
Published 31 Aug 2023

Control of morphology and crystallinity of CNTs in flame synthesis with one-dimensional reaction zone

  • Muhammad Hilmi Ibrahim,
  • Norikhwan Hamzah,
  • Mohd Zamri Mohd Yusop,
  • Ni Luh Wulan Septiani and
  • Mohd Fairus Mohd Yasin

Beilstein J. Nanotechnol. 2023, 14, 741–750, doi:10.3762/bjnano.14.61

Graphical Abstract
  • Malaysia, 81310 Johor Bahru, Malaysia Advanced Membrane Technology Research Center, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia National Research and Innovation Agency, Indonesia 10.3762/bjnano.14.61 Abstract The growth of carbon nanotubes (CNTs) in a flame requires conditions that are
  • flame is conducted regarding the morphology and crystallinity of the as-grown nanotubes. The premixed burner configuration created a flame that is stabilized through axisymmetric stagnation flow through sintered metal with one-dimensional geometry, different from a conventional co-flow flame. The
  • CNT functionalization for energy storage, nanosensor, and nanocomposite applications, where diameter and crystallinity are influential properties that govern the overall performance of the components. Keywords: carbon nanotubes; crystallinity; flame synthesis; morphology; one-dimensional flame
PDF
Album
Full Research Paper
Published 21 Jun 2023

Carbon nanotube-cellulose ink for rapid solvent identification

  • Tiago Amarante,
  • Thiago H. R. Cunha,
  • Claudio Laudares,
  • Ana P. M. Barboza,
  • Ana Carolina dos Santos,
  • Cíntia L. Pereira,
  • Vinicius Ornelas,
  • Bernardo R. A. Neves,
  • André S. Ferlauto and
  • Rodrigo G. Lacerda

Beilstein J. Nanotechnol. 2023, 14, 535–543, doi:10.3762/bjnano.14.44

Graphical Abstract
  • Federal do ABC, Santo André - CEP 09210-580, Brazil 10.3762/bjnano.14.44 Abstract In this work, a conductive ink based on microfibrillated cellulose (MFC) and multiwalled carbon nanotubes (MWCNTs) was used to produce transducers for rapid liquid identification. The transducers are simple resistive
  • of lightweight materials comprising a conductive ingredient (e.g., carbon nanotubes (CNTs), graphene, graphene oxide, and metal particles) embedded in a polymer matrix, have been extensively studied as liquid sensors [14][15][16][17][21][22]. The main idea is to combine the responsive electrical
  • has resurfaced recently as a smart material because of its excellent thermal-mechanical properties, biocompatibility, biodegradability, and flexibility [22][23][30][31]. Composites based on carbon nanotubes or graphene and cellulose have been reported for, among other things, humidity and vapor
PDF
Album
Supp Info
Full Research Paper
Published 26 Apr 2023

Plasmonic nanotechnology for photothermal applications – an evaluation

  • A. R. Indhu,
  • L. Keerthana and
  • Gnanaprakash Dharmalingam

Beilstein J. Nanotechnol. 2023, 14, 380–419, doi:10.3762/bjnano.14.33

Graphical Abstract
  • cause little damage to adjacent healthy tissues due to extremely localized heating [3]. Generally, the reduction of material dimensions to the nanoscale, such as in graphene, carbon nanotubes (CNT) and polymers, leads to an enhancement of the PT effect due to factors such as improved thermal
PDF
Album
Review
Published 27 Mar 2023

Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes

  • Akeem Adeyemi Oladipo and
  • Faisal Suleiman Mustafa

Beilstein J. Nanotechnol. 2023, 14, 291–321, doi:10.3762/bjnano.14.26

Graphical Abstract
  • photocatalyst that can be applied industrially for the remediation of a variety of pollutants in contaminated water. First, photocatalytic activity is significantly influenced by the morphology (e.g., nanoplates, nanotubes, nanowires, nanorods, nanocuboids, nanoflakes, nanosheets, nanocapsules, nanocasts, or
PDF
Album
Review
Published 03 Mar 2023

Atmospheric water harvesting using functionalized carbon nanocones

  • Fernanda R. Leivas and
  • Marcia C. Barbosa

Beilstein J. Nanotechnol. 2023, 14, 1–10, doi:10.3762/bjnano.14.1

Graphical Abstract
  • slowing down when confined in biological structures with the presence of hydrophobic and hydrophilic sites [25]. Water confined in hydrophobic structures, such as carbon nanotubes with diameters below 2 nm, exhibits a fast flow that exceeds values provided by classical hydrodynamics [26]. This super flow
  • pressure, nanotubes have been functionalized with hydrophilic groups [29][30]. The addition of hydrophilic regions in small diameter environments, however, decreases the velocity of water molecules [31]. The high flow of water in nanostructures is also useful for capturing water from the atmosphere
  • . Nanotubes with hydrophilic sites for water capture and hydrophobic regions for the movement of water to reservoirs [32][33] have been analyzed. Despite reasonable results on the capacity of capturing water, the small diameter of the nanotube entrance requires high pressures for the water to enter, which
PDF
Album
Full Research Paper
Published 02 Jan 2023

Single-step extraction of small-diameter single-walled carbon nanotubes in the presence of riboflavin

  • Polina M. Kalachikova,
  • Anastasia E. Goldt,
  • Eldar M. Khabushev,
  • Timofei V. Eremin,
  • Timofei S. Zatsepin,
  • Elena D. Obraztsova,
  • Konstantin V. Larionov,
  • Liubov Yu. Antipina,
  • Pavel B. Sorokin and
  • Albert G. Nasibulin

Beilstein J. Nanotechnol. 2022, 13, 1564–1571, doi:10.3762/bjnano.13.130

Graphical Abstract
  • novel approach to disperse and extract small-diameter single-walled carbon nanotubes (SWCNTs) using an aqueous solution of riboflavin and Sephacryl gel. The extraction of small-diameter semiconducting SWCNTs was observed, regardless of the initial diameter distribution of the SWCNTs. Dispersion of
  • SWCNTs occurs due to the adsorption of π-conjugated isoalloxazine moieties on the surface of small-diameter nanotubes and interactions between hydroxy groups of ribityl chains with water. During the SWCNT extraction, specific adsorption of riboflavin to SWCNTs leads to the minimization of interactions
  • between the SWCNTs and gel media. Our experimental findings are supported by ab initio calculations demonstrating the impact of the riboflavin wrapping pattern around the SWCNTs on their interaction with the allyl dextran gel. Keywords: carbon nanotubes; photoluminescence spectroscopy; riboflavin; size
PDF
Album
Supp Info
Full Research Paper
Published 22 Dec 2022

Photoelectrochemical water oxidation over TiO2 nanotubes modified with MoS2 and g-C3N4

  • Phuong Hoang Nguyen,
  • Thi Minh Cao,
  • Tho Truong Nguyen,
  • Hien Duy Tong and
  • Viet Van Pham

Beilstein J. Nanotechnol. 2022, 13, 1541–1550, doi:10.3762/bjnano.13.127

Graphical Abstract
  • filter cutting at 380 nm. Results and Discussion Characterizations of materials Figure 1a displays the morphology of TNAs, which have a uniform distribution of nanotubes with average diameters ranging from 80–100 nm and a length of 500 nm (Figure 1b). The MoS2 material exhibits the stacked layers of 2D
PDF
Album
Supp Info
Full Research Paper
Published 16 Dec 2022

A TiO2@MWCNTs nanocomposite photoanode for solar-driven water splitting

  • Anh Quynh Huu Le,
  • Ngoc Nhu Thi Nguyen,
  • Hai Duy Tran,
  • Van-Huy Nguyen and
  • Le-Hai Tran

Beilstein J. Nanotechnol. 2022, 13, 1520–1530, doi:10.3762/bjnano.13.125

Graphical Abstract
  • -603103, Tamil Nadu, India 10.3762/bjnano.13.125 Abstract A TiO2@MWCNTs (multi-wall carbon nanotubes) nanocomposite photoanode is prepared for photoelectrochemical water splitting in this study. The physical and photoelectrochemical properties of the photoanode are characterized using field emission
  • under solar irradiation. Keywords: multi-wall carbon nanotubes (MWCNTs); nanomaterials; photoelectrochemical; TiO2; water splitting; Introduction TiO2 is an excellent photochemical catalyst for environmental and chemical applications due to its good activity regarding numerous reduction and oxidation
  • been developed to increase the absorption of visible solar light [6][7]. Notably, carbon nanotubes (CNTs) are a promising material for visible-light absorption [8]. A combination of TiO2 with CNTs can effectively enhance the separation of e−/h+ pairs based on the high electric conductivity of CNTs
PDF
Album
Full Research Paper
Published 14 Dec 2022

Enhanced electronic transport properties of Te roll-like nanostructures

  • E. R. Viana,
  • N. Cifuentes and
  • J. C. González

Beilstein J. Nanotechnol. 2022, 13, 1284–1291, doi:10.3762/bjnano.13.106

Graphical Abstract
  • ), nanorods (NRs), nanowires (NWs), nanobelts (NBs), nanotubes (NTs), nanoflowers (NFs) and chiral nanostructures [6][7][8][9][10]. Trigonal tellurium (t-Te) MLs have also been recently proposed as a silicon successor for nanoelectronics because of their high hole mobility and current density [3]. Combining
  • nanostructures [11][12][13][14]. Te NTs have shown metallic character and decreasing electrical resistivity with temperature [11]. Te NWs encapsulated in boron nitride nanotubes have shown a large current-carrying capacity and p-type semiconducting characteristics, which can be reversed to n-type behavior after
  • capping with Al2O3 [12]. Theoretical works have also demonstrated that field-effect transistors (FETs) with single n-type trigonal Te NWs outperform the ones built with three trigonal Te NWs [14]. One important group of nanostructures, different from hollow nanotubes and solid nanowires, is NBs. NBs have
PDF
Album
Supp Info
Full Research Paper
Published 08 Nov 2022

Studies of probe tip materials by atomic force microscopy: a review

  • Ke Xu and
  • Yuzhe Liu

Beilstein J. Nanotechnol. 2022, 13, 1256–1267, doi:10.3762/bjnano.13.104

Graphical Abstract
  • mechanical properties of the cantilever beam directly affect the performance, measurement resolution, and image quality of the AFM instrument. AFM probe tips [9][10] are generally fabricated with coatings, carbon nanotubes, magnetic nanoparticles, or even protein functionalization. A combination of probe
  • and poorly controlled. Cheng et al. [11] introduced a method to selectively prepare individual carbon nanotubes on AFM tips by controlling the trigger threshold to regulate the growth solution on the tip. The obtained carbon nanotube probes are of suitable length and do not require a subsequent
  • can also be used as a nanolight source or nanoscalpel to manipulate and operate on cells directly. Carbon nanotube probe Carbon nanotubes (CNTs) are considered an ideal AFM tip material due to their small diameter, high aspect ratio, mechanical robustness, large Young's modulus, and well-defined
PDF
Album
Review
Published 03 Nov 2022

Roll-to-roll fabrication of superhydrophobic pads covered with nanofur for the efficient clean-up of oil spills

  • Patrick Weiser,
  • Robin Kietz,
  • Marc Schneider,
  • Matthias Worgull and
  • Hendrik Hölscher

Beilstein J. Nanotechnol. 2022, 13, 1228–1239, doi:10.3762/bjnano.13.102

Graphical Abstract
  • durable. Other options for chemically treated superhydrophobic surfaces, such as the use of fluorinated silanes, fluoropolymer coatings, and carbon nanotubes, exist, but are either rather costly to apply and/or potentially harmful to the environment. A much simpler and cheaper option is the fabrication of
PDF
Album
Supp Info
Full Research Paper
Published 31 Oct 2022

Design of surface nanostructures for chirality sensing based on quartz crystal microbalance

  • Yinglin Ma,
  • Xiangyun Xiao and
  • Qingmin Ji

Beilstein J. Nanotechnol. 2022, 13, 1201–1219, doi:10.3762/bjnano.13.100

Graphical Abstract
  • nanostructures such as carbon nanotubes and fullerenes were demonstrated to have chirality. However, the preparation of chirality-pure substrates still requires the combination of specific carbon nanostructures and homochiral functionalizations [150][151]. Protein misfolding, which may form amyloid aggregates
PDF
Album
Review
Published 27 Oct 2022

Application of nanoarchitectonics in moist-electric generation

  • Jia-Cheng Feng and
  • Hong Xia

Beilstein J. Nanotechnol. 2022, 13, 1185–1200, doi:10.3762/bjnano.13.99

Graphical Abstract
  • ]. This viewpoint was confirmed by many experiments later, such as the electrical signal generated by the flow of water through single-walled carbon nanotubes [7], carbon nanosheets [8], and nanoparticles [9]. Regarding the principle of this phenomenon, the common explanation is that charge transfer
  • improve the efficiency of energy harvesting in MEGs, and a considerable number of studies have focused on nanomaterials [9][21]. The generation of a flowing current through the injection of water flow into carbon nanotubes was one of the initial studies of MEGs [4][5][10][22][23]. Since then, more works
  • discussed in detail. 2 Inorganic nanomaterials for MEG 2.1 Carbon nanotubes and carbon nanoparticles Among inorganic nanomaterials, carbon nanoparticles, carbon nanotubes, graphene, graphene oxide, metal oxides, and transition metal chalcogenides (TMDs) have been reported so far regarding applications in
PDF
Album
Review
Published 25 Oct 2022

Microneedle-based ocular drug delivery systems – recent advances and challenges

  • Piotr Gadziński,
  • Anna Froelich,
  • Monika Wojtyłko,
  • Antoni Białek,
  • Julia Krysztofiak and
  • Tomasz Osmałek

Beilstein J. Nanotechnol. 2022, 13, 1167–1184, doi:10.3762/bjnano.13.98

Graphical Abstract
  • (PEGDA) [132] and poly(acrylic-co-maleic) acid (PAMA) [133]. It is also important to notice that there are numerous studies describing the use of composite materials containing combinations of various substances, both organic and inorganic. For example, studies involving PLA and carbon nanotubes [134
PDF
Album
Review
Published 24 Oct 2022

Recent advances in green carbon dots (2015–2022): synthesis, metal ion sensing, and biological applications

  • Aisha Kanwal,
  • Naheed Bibi,
  • Sajjad Hyder,
  • Arif Muhammad,
  • Hao Ren,
  • Jiangtao Liu and
  • Zhongli Lei

Beilstein J. Nanotechnol. 2022, 13, 1068–1107, doi:10.3762/bjnano.13.93

Graphical Abstract
  • carbon nanoparticles during electrophoretic purification of single-walled carbon nanotubes [1]. Sun et al. synthesized fluorescent carbon particles smaller than 10 nm, which were named “carbon dots” for the first time in 2006 [2]. Due to its significant fluorescent properties, this class of carbon
  • glycol [6], phytic acid [7], phenylenediamine [8], ammonium citrate [9], citric acid [10], ethylene diamine tetra acetic acid [11], carbon nanotubes [12], and graphite [13]. Additionally, graphite, nanodiamonds, and activated carbon can be applied as precursor for the fabrication of CDs [14]. Meanwhile
  • synthetic pathways for the formation of CDs, that is, “top-down” and “bottom-up” methods. In the top-down method, large carbon structures (such as carbon nanotubes or graphite) are decomposed into CDs. The top-down methods include arc discharge, laser abrasion [24], chemical and electrochemical oxidation
PDF
Album
Review
Published 05 Oct 2022

Biomimetic chitosan with biocomposite nanomaterials for bone tissue repair and regeneration

  • Se-Kwon Kim,
  • Sesha Subramanian Murugan,
  • Pandurang Appana Dalavi,
  • Sebanti Gupta,
  • Sukumaran Anil,
  • Gi Hun Seong and
  • Jayachandran Venkatesan

Beilstein J. Nanotechnol. 2022, 13, 1051–1067, doi:10.3762/bjnano.13.92

Graphical Abstract
  • , researchers have tried several ways to develop different materials using chitosan-based nanocomposites of silver, copper, gold, zinc oxide, titanium oxide, carbon nanotubes, graphene oxide, and biosilica. The combination of materials helps in the expression of ideal bone formation genes of alkaline
  • oxide, zinc oxide, carbon nanotubes, graphene oxide, and biosilica was developed to improve bone scaffolds for better bone tissue repair and regeneration [11]. In tissue engineering applications, nanoscale topological characteristics influence cell adhesion, survival, proliferation, and differentiation
  • and regeneration [14]. Nanomaterials such as silver [15], gold [16][17], titanium oxide [18], zinc oxide [19][20], carbon nanotubes [21][22], graphene [23] and biosilica have been studied in terms of their osteogenic potential in stem cell differentiation. Chitosan materials are often combined with
PDF
Review
Published 29 Sep 2022

Spindle-like MIL101(Fe) decorated with Bi2O3 nanoparticles for enhanced degradation of chlortetracycline under visible-light irradiation

  • Chen-chen Hao,
  • Fang-yan Chen,
  • Kun Bian,
  • Yu-bin Tang and
  • Wei-long Shi

Beilstein J. Nanotechnol. 2022, 13, 1038–1050, doi:10.3762/bjnano.13.91

Graphical Abstract
  • use carbon nanotubes or carbon quantum dots to modify MIL101(Fe) to enhance its conductivity and broaden its visible-light response [37][38]. Another strategy is to construct MIL101-based heterostructures with the aid of narrow-gap semiconductors to promote the separation and transfer of
PDF
Album
Supp Info
Full Research Paper
Published 28 Sep 2022

Electrocatalytic oxygen reduction activity of AgCoCu oxides on reduced graphene oxide in alkaline media

  • Iyyappan Madakannu,
  • Indrajit Patil,
  • Bhalchandra Kakade and
  • Kasibhatta Kumara Ramanatha Datta

Beilstein J. Nanotechnol. 2022, 13, 1020–1029, doi:10.3762/bjnano.13.89

Graphical Abstract
  • et al. prepared supportless Ag nanowires and 1D mesoporous hollow AgPdPt nanotubes by micelle-assisted galvanic replacement followed by acid etching. They found that hollow AgPdPt structures exhibited a better ORR activity with onset and half-wave potential of 0.99 V and 0.90 V vs RHE, respectively
  • ). The superior ECSA values of our electrocatalysts are comparable to that of AgCo/electrochemically reduced graphene oxide and AgPdPt nanotubes (Table S3, Supporting Information File 1). Even though ACC-3 displayed a slightly higher ESCA and mass activity as compared to ACC-2, the higher onset potential
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2022

Recent advances in nanoarchitectures of monocrystalline coordination polymers through confined assembly

  • Lingling Xia,
  • Qinyue Wang and
  • Ming Hu

Beilstein J. Nanotechnol. 2022, 13, 763–777, doi:10.3762/bjnano.13.67

Graphical Abstract
  • coordination polymer shells, flow syntheses have been used recently [107][108]. The encapsulation of networks can help to regulate the properties of monocrystalline coordination polymers. Bare or modified carbon nanotubes could be modified to allow coordination polymers to grow around [109][110]. This is used
  • graphene oxide networks, (c) carbon nanotubes, and (d) boron nitride networks. Figure 4 was reprinted with permission from [111], Copyright 2021 American Chemical Society. This content is not subject to CC BY 4.0. (a) Schematic illustration of synthesis of SOM-ZIF-8. SOM stands for single-crystal ordered
PDF
Album
Review
Published 12 Aug 2022

Hierarchical Bi2WO6/TiO2-nanotube composites derived from natural cellulose for visible-light photocatalytic treatment of pollutants

  • Zehao Lin,
  • Zhan Yang and
  • Jianguo Huang

Beilstein J. Nanotechnol. 2022, 13, 745–762, doi:10.3762/bjnano.13.66

Graphical Abstract
  • nanotubes were formed by TiO2 nanotubes that uniformly anchored with Bi2WO6 nanoparticles of various densities on the surface. The composites exhibited improved photocatalytic activities toward the reduction of Cr(VI) and degradation of rhodamine B under visible light (λ > 420 nm), which were attributed to
  • the uniform anchoring of Bi2WO6 nanoparticles on TiO2 nanotubes, as well as strong mutual effects and well-proportioned formation of heterostructures in between the Bi2WO6 and TiO2 phases. These improvements arose from the cellulose-derived unique structures, leading to an enhanced absorption of
  • photocatalytic reduction of Cr(VI), while hydroxyl radicals and reactive holes contributed to the photocatalytic degradation of rhodamine B. Keywords: biomimetic synthesis; cellulose; nanoarchitectonics; nanocomposite; nanotubes; photocatalysis; pollutants; Introduction The direct emission of untreated
PDF
Album
Supp Info
Full Research Paper
Published 04 Aug 2022

A nonenzymatic reduced graphene oxide-based nanosensor for parathion

  • Sarani Sen,
  • Anurag Roy,
  • Ambarish Sanyal and
  • Parukuttyamma Sujatha Devi

Beilstein J. Nanotechnol. 2022, 13, 730–744, doi:10.3762/bjnano.13.65

Graphical Abstract
  • , hybrid carbon nanomaterials such as ferrocene-thiophene modified by carbon nanotubes, zinc(II) phthalocyanine-boron dipyrromethene attached single-walled carbon nanotubes were used for the direct detection of pesticides [12][13][14][15]. So far, only limited electrochemical nanosensors modified by
  • methyl paraoxon in vegetables [23]. Recently, Jangid et al. (2021) also described the electrocatalytic activity of fenitrothion on glassy carbon electrodes modified with nitrogen and sulfur co-doped activated carbon-coated multiwalled carbon nanotubes [24]. Nevertheless, the fabrication process of the
PDF
Album
Supp Info
Full Research Paper
Published 28 Jul 2022
Other Beilstein-Institut Open Science Activities