Search results

Search for "particle size distribution" in Full Text gives 155 result(s) in Beilstein Journal of Nanotechnology.

Stimuli-responsive polypeptide nanogels for trypsin inhibition

  • Petr Šálek,
  • Jana Dvořáková,
  • Sviatoslav Hladysh,
  • Diana Oleshchuk,
  • Ewa Pavlova,
  • Jan Kučka and
  • Vladimír Proks

Beilstein J. Nanotechnol. 2022, 13, 538–548, doi:10.3762/bjnano.13.45

Graphical Abstract
  • presence of SPAN 80 [24]. TEM microscopy analysis has revealed a slight narrowing of the particle size distribution with Đ = 1.43. PHEG-Tyr nanogel is composed of two families of compact hydrogel spheres with Dn = 111 and 19 nm, and Dw = 159 and 24 nm, respectively. Biocompatible zwitterionic Nα-Lys-NG was
  • to the measurement at 25 °C as a result of the contribution from hydrophobic interactions and hydrogen bonds. However, it is important to note that the measurement was also affected by the broad particle size distribution of Nα-Lys-NG nanogel documented by the error bars in Figure 3a. PDI values
  • min without pulsation, and 1 min pulsation (0.5 s pulse rate). All measurements were performed in pentaplicates, and data were expressed as mean and standard deviation. Morphology, size, and particle size distribution of the nanogels were studied using a Tecnai G2 Spirit Twin 12 transmission electron
PDF
Album
Full Research Paper
Published 22 Jun 2022

Ethosomal (−)-epigallocatechin-3-gallate as a novel approach to enhance antioxidant, anti-collagenase and anti-elastase effects

  • Çiğdem Yücel,
  • Gökçe Şeker Karatoprak,
  • Sena Yalçıntaş and
  • Tuğba Eren Böncü

Beilstein J. Nanotechnol. 2022, 13, 491–502, doi:10.3762/bjnano.13.41

Graphical Abstract
  • ) (Figure 2). As seen in Table 1, increasing particle size and particle size distribution were determined depending on the increasing lipid ratio and ethanol ratio. It is possible to say that ethanol gives a net negative charge to the ethosomal system and provides it with some degree of steric stabilization
PDF
Album
Full Research Paper
Published 31 May 2022

The effect of metal surface nanomorphology on the output performance of a TENG

  • Yiru Wang,
  • Xin Zhao,
  • Yang Liu and
  • Wenjun Zhou

Beilstein J. Nanotechnol. 2022, 13, 298–312, doi:10.3762/bjnano.13.25

Graphical Abstract
  • ). After the size screening, the proportion of each particle size was calculated. The particle size distribution plays a vital role in improving the output performance. The nanocrystals can be divided into pyramids, spheroids and strips. The shape of the metal nanocrystals determines the distribution of
  • obvious in experiment 15. The particle size distribution of experiment 15 is relatively concentrated, and its improvement on the output performance reaches 34%, almost twice that of experiments 4 and 5 (Figure 9). We measured the nanoparticle size and its variance and studied the relationship between the
  • variance will also greatly affect the output performance, especially in 15 out the 16 samples, the output performance significant improved due to narrow particle size distribution. We also studied the effect of the average particle size on the output efficiency. The average particle size data were obtained
PDF
Album
Full Research Paper
Published 15 Mar 2022

Systematic studies into uniform synthetic protein nanoparticles

  • Nahal Habibi,
  • Ava Mauser,
  • Jeffery E. Raymond and
  • Joerg Lahann

Beilstein J. Nanotechnol. 2022, 13, 274–283, doi:10.3762/bjnano.13.22

Graphical Abstract
  • process. Dynamic light scattering DLS measurements were performed on particles in their hydrated state using a Zetasizer Nano ZS (Malvern Panalytical). The solution in which the particles were suspended was DPBS. DLS was employed to measure the particle size distribution after particle collection and
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2022

Photothermal ablation of murine melanomas by Fe3O4 nanoparticle clusters

  • Xue Wang,
  • Lili Xuan and
  • Ying Pan

Beilstein J. Nanotechnol. 2022, 13, 255–264, doi:10.3762/bjnano.13.20

Graphical Abstract
  • morphology of the as-synthesized nanoparticle clusters was characterized with a JEOL JEM-2100 transmission electron microscopy (TEM). Dynamic light scattering (DLS) The synthesized Fe3O4 NPCs were diluted in RPMI 1640 medium to a final concentration of 0.25 mg/mL. The particle size distribution was
  • quadratic fit of the correlation function. The particle size distribution was measured using the inbuilt DTS (nano) software. Samples were equilibrated for 1 min before measurement. All measurements were performed in triplicates. Hyperthermia effect of Fe3O4 nanoparticle clusters in solution The Fe3O4
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2022

Criteria ruling particle agglomeration

  • Dieter Vollath

Beilstein J. Nanotechnol. 2021, 12, 1093–1100, doi:10.3762/bjnano.12.81

Graphical Abstract
  • teach that, in case of any energetic interaction of the particles, the influence of the entropy is minor or even negligible. Complementary to the simulations, the extremum of the entropy was determined using the Lagrange method. Both approaches yielded identical result for the particle size distribution
  • Table 1. This fact confirms the correctness of the procedure reported in the previous sections. Furthermore, the selection of an exponential function for the particle size distribution is justified. Results of enthalpy simulations As already mentioned in the section “Basic considerations”, particle
  • [1]. Within the current study, the influence of thermodynamics was discussed by systematic analyses of the different thermodynamic functions. Looking at the maximum of the entropy, the simulations show that the particle size distribution follows perfectly an exponential function. The parameters found
PDF
Album
Full Research Paper
Published 29 Sep 2021

On the stability of microwave-fabricated SERS substrates – chemical and morphological considerations

  • Limin Wang,
  • Aisha Adebola Womiloju,
  • Christiane Höppener,
  • Ulrich S. Schubert and
  • Stephanie Hoeppener

Beilstein J. Nanotechnol. 2021, 12, 541–551, doi:10.3762/bjnano.12.44

Graphical Abstract
  • capabilities of the SERS substrates due to size and nanolensing effects [26][27]. However, this complicates the quantitative analysis of the nanoparticle sizes. In this study, we analyzed the averaged particle size distribution by evaluating the projected area of the particles to determine the particle
PDF
Album
Supp Info
Full Research Paper
Published 11 Jun 2021

Solution combustion synthesis of a nanometer-scale Co3O4 anode material for Li-ion batteries

  • Monika Michalska,
  • Huajun Xu,
  • Qingmin Shan,
  • Shiqiang Zhang,
  • Yohan Dall'Agnese,
  • Yu Gao,
  • Amrita Jain and
  • Marcin Krajewski

Beilstein J. Nanotechnol. 2021, 12, 424–431, doi:10.3762/bjnano.12.34

Graphical Abstract
  • powder magnified (a) 25,000 times and (b) 100,000 times. (c) TEM image of the Co3O4 powder (inset: a particle size distribution diagram). Electrochemical properties of the Co3O4 electrodes. (a) The first to fifth cycle profiles measured at current density of 100 mA·g−1. (b) Cycling performance measured
PDF
Album
Supp Info
Full Research Paper
Published 10 May 2021

Characterization, bio-uptake and toxicity of polymer-coated silver nanoparticles and their interaction with human peripheral blood mononuclear cells

  • Sahar Pourhoseini,
  • Reilly T. Enos,
  • Angela E. Murphy,
  • Bo Cai and
  • Jamie R. Lead

Beilstein J. Nanotechnol. 2021, 12, 282–294, doi:10.3762/bjnano.12.23

Graphical Abstract
  • 9.4). STEM images of 1000 µg·L−1 PVP-AgNPs and particle size distribution obtained from ImageJ. PVP-AgNPs in RPMI medium (without cells) at (a, b) t = 0, size distribution = 29 ± 0.49 nm and at (c, d) t = 24 h, size distribution = 17 ± 11 nm, under the same conditions as during exposure to cells
PDF
Album
Supp Info
Full Research Paper
Published 24 Mar 2021

Differences in surface chemistry of iron oxide nanoparticles result in different routes of internalization

  • Barbora Svitkova,
  • Vlasta Zavisova,
  • Veronika Nemethova,
  • Martina Koneracka,
  • Miroslava Kretova,
  • Filip Razga,
  • Monika Ursinyova and
  • Alena Gabelova

Beilstein J. Nanotechnol. 2021, 12, 270–281, doi:10.3762/bjnano.12.22

Graphical Abstract
  • characteristics of these nanoparticles in the solvent and culture medium are shown in Table 1. Dynamic light scattering (DLS) Particle size distribution and zeta potential of the surface-modified MNPs in stock solution and culture medium were determined by DLS using a Zetasizer Nano-ZS (Malvern Instruments, UK
PDF
Album
Supp Info
Full Research Paper
Published 23 Mar 2021

Free and partially encapsulated manganese ferrite nanoparticles in multiwall carbon nanotubes

  • Saja Al-Khabouri,
  • Salim Al-Harthi,
  • Toru Maekawa,
  • Mohamed E. Elzain,
  • Ashraf Al-Hinai,
  • Ahmed D. Al-Rawas,
  • Abbsher M. Gismelseed,
  • Ali A. Yousif and
  • Myo Tay Zar Myint

Beilstein J. Nanotechnol. 2020, 11, 1891–1904, doi:10.3762/bjnano.11.170

Graphical Abstract
  • nanoparticles have sizes ranging from 5 to 24 nm, with an estimated average size of 10–19 nm (Figure 1b). The particle size distribution is shown in Supporting Information File 1, Figure S2. In addition, a HRTEM image (Figure 1c) indicates a lattice spacing of 0.26 nm for the (311) plane of the MnFe2O4
PDF
Album
Supp Info
Full Research Paper
Published 29 Dec 2020

Nanocasting synthesis of BiFeO3 nanoparticles with enhanced visible-light photocatalytic activity

  • Thomas Cadenbach,
  • Maria J. Benitez,
  • A. Lucia Morales,
  • Cesar Costa Vera,
  • Luis Lascano,
  • Francisco Quiroz,
  • Alexis Debut and
  • Karla Vizuete

Beilstein J. Nanotechnol. 2020, 11, 1822–1833, doi:10.3762/bjnano.11.164

Graphical Abstract
  • very narrow particle size distribution. The results also suggest that the nanoparticles are characterized by a low concentration of surface defects and a low level of local strain, which is ideal for surface-based applications such as photocatalysis. This is confirmed by the reaction kinetics of the
PDF
Album
Supp Info
Full Research Paper
Published 07 Dec 2020

Self-standing heterostructured NiCx-NiFe-NC/biochar as a highly efficient cathode for lithium–oxygen batteries

  • Shengyu Jing,
  • Xu Gong,
  • Shan Ji,
  • Linhui Jia,
  • Bruno G. Pollet,
  • Sheng Yan and
  • Huagen Liang

Beilstein J. Nanotechnol. 2020, 11, 1809–1821, doi:10.3762/bjnano.11.163

Graphical Abstract
  •  2a shows that the Prussian blue analogues formed on the surface of PP have a well-defined cubic shape with an uniform particle size distribution. The particle size was approx. 80 nm. These cubic particles were made out of many small particles and many cavities were observed on the surface. SEM images
PDF
Album
Full Research Paper
Published 02 Dec 2020

Cardiomyocyte uptake mechanism of a hydroxyapatite nanoparticle mediated gene delivery system

  • Hiroaki Komuro,
  • Masahiro Yamazoe,
  • Kosuke Nozaki,
  • Akiko Nagai and
  • Tetsuo Sasano

Beilstein J. Nanotechnol. 2020, 11, 1685–1692, doi:10.3762/bjnano.11.150

Graphical Abstract
  • of 75 kV. The particle size distribution of the HAp nanoparticles was measured via NTA (NanoSight NS10, Malvern). Cell culture HL-1 is a cell line derived from mouse atrial myocytes, which was originally isolated and characterized by Dr. Claycomb (University of Louisiana) [39]. HL-1 cells (murine
PDF
Album
Full Research Paper
Published 05 Nov 2020

High-responsivity hybrid α-Ag2S/Si photodetector prepared by pulsed laser ablation in liquid

  • Raid A. Ismail,
  • Hanan A. Rawdhan and
  • Duha S. Ahmed

Beilstein J. Nanotechnol. 2020, 11, 1596–1607, doi:10.3762/bjnano.11.142

Graphical Abstract
  • surfactant, monodispersed Ag2S nanoparticles can be obtained with an average size of 45 nm with few agglomerated NPs. Figure 9 shows the particle size distribution of Ag2S synthesized without and with CTAB. The particle size of Ag2S NPs ranged from 10 to 70 nm with an average of 55 nm, while the particle
  • distribution of Ag2S NPs prepared with CTAB ranged from 5 to 60 nm with an average of 45 nm. The particle size distribution of Ag2S prepared with CTAB is nearly Gaussian. The particle size distribution improved after adding CTAB, which plays a major role in preventing particle agglomeration [38]. The energy
  • Ag2S NPs synthesized in pure Tu solution (a) and Tu with CTAB surfactant solution (b). Particle size distribution of Ag2S NPs synthesized (a) without and (b) with CTAB. EDX of Ag2S NPs synthesized in (a) pure Tu and in (b) Tu with CTAB. The inset shows the measured elements. Dark I–V characteristics of
PDF
Album
Full Research Paper
Published 21 Oct 2020

Wafer-level integration of self-aligned high aspect ratio silicon 3D structures using the MACE method with Au, Pd, Pt, Cu, and Ir

  • Mathias Franz,
  • Romy Junghans,
  • Paul Schmitt,
  • Adriana Szeghalmi and
  • Stefan E. Schulz

Beilstein J. Nanotechnol. 2020, 11, 1439–1449, doi:10.3762/bjnano.11.128

Graphical Abstract
  • broad particle size distribution. The surface is covered by more than 44%, which means 876 particles/μm2. The Pt particles mainly have a diameter below 10 nm with 495 particles/μm2. The total surface coverage did not exceed 1.0%. This result implies that the Pt film was significantly thinner than the
  • , we were able to cover the whole wafer surface homogeneously with nanoparticles. The particle size distribution can easily be modified by varying film thickness and annealing conditions or, correspondingly, the number of ALD cycles for the Ir particles. Silicon etching The wafers with noble metal
  • distributed walls with trenches of various sizes. This structure comprises nanopores of a few nanometres in diameter. The observed diameter distribution of the vertical trenches corresponds to the particle size distribution of Figure 1f. This indicates that all particles contribute to the etching process
PDF
Album
Full Research Paper
Published 23 Sep 2020

One-step synthesis of carbon-supported electrocatalysts

  • Sebastian Tigges,
  • Nicolas Wöhrl,
  • Ivan Radev,
  • Ulrich Hagemann,
  • Markus Heidelmann,
  • Thai Binh Nguyen,
  • Stanislav Gorelkov,
  • Stephan Schulz and
  • Axel Lorke

Beilstein J. Nanotechnol. 2020, 11, 1419–1431, doi:10.3762/bjnano.11.126

Graphical Abstract
  • platinum loading, degree of oxidation, and the very narrow particle size distribution are precisely adjusted in the Pt/C hybrid material due to the simultaneous deposition of platinum and carbon during the process. The as-synthesized Pt/C hybrid materials are promising electrocatalysts for use in fuel cell
  • , and Pt-NPs with a mean particle diameter less than 3 nm and a narrow particle size distribution (PSD) with a geometric standard deviation of 1.24–1.3 can be achieved. Furthermore, the NP immobilization within the carbon support significantly improves the long-term stability of the catalyst, as shown
  • for the deposition of Pt/CNW hybrid materials using plasma-enhanced chemical vapor deposition is presented. The wall density and height of the carbon matrix, as well as the platinum loading, degree of oxidation, and particle size distribution, can be precisely controlled by careful adjustment of the
PDF
Album
Supp Info
Full Research Paper
Published 17 Sep 2020

Nanoparticles based on the zwitterionic pillar[5]arene and Ag+: synthesis, self-assembly and cytotoxicity in the human lung cancer cell line A549

  • Dmitriy N. Shurpik,
  • Denis A. Sevastyanov,
  • Pavel V. Zelenikhin,
  • Pavel L. Padnya,
  • Vladimir G. Evtugyn,
  • Yuriy N. Osin and
  • Ivan I. Stoikov

Beilstein J. Nanotechnol. 2020, 11, 421–431, doi:10.3762/bjnano.11.33

Graphical Abstract
  • out after mixing the solutions at 293 K. Dynamic light scattering (DLS) The particle size distribution formed as a result of self-association of the pillar[5]arenes 2–4 was determined at 20 °С by dynamic light scattering using a nanoparticle size analyzer (Zetasizer Nano ZS, Malvern) in quartz
PDF
Album
Supp Info
Full Research Paper
Published 05 Mar 2020

Facile biogenic fabrication of hydroxyapatite nanorods using cuttlefish bone and their bactericidal and biocompatibility study

  • Satheeshkumar Balu,
  • Manisha Vidyavathy Sundaradoss,
  • Swetha Andra and
  • Jaison Jeevanandam

Beilstein J. Nanotechnol. 2020, 11, 285–295, doi:10.3762/bjnano.11.21

Graphical Abstract
  • grid and allowed to stick. The size and morphology of the synthesized nanohydroxyapatite was observed. The average particle size distribution of CB-Hap NRs was plotted using ImageJ software. The elemental composition analysis via energy dispersive X-ray analysis (EDX) was also performed to confirm the
PDF
Album
Full Research Paper
Published 04 Feb 2020

The different ways to chitosan/hyaluronic acid nanoparticles: templated vs direct complexation. Influence of particle preparation on morphology, cell uptake and silencing efficiency

  • Arianna Gennari,
  • Julio M. Rios de la Rosa,
  • Erwin Hohn,
  • Maria Pelliccia,
  • Enrique Lallana,
  • Roberto Donno,
  • Annalisa Tirella and
  • Nicola Tirelli

Beilstein J. Nanotechnol. 2019, 10, 2594–2608, doi:10.3762/bjnano.10.250

Graphical Abstract
  • particles marginally larger than Chit35, and the width of the particle size distribution – as assessed with DLS as a stand-alone instrument – was also similar (Figure 1, compare dashed and solid lines). Further, both methods allowed for quantitative siRNA entrapment, and the encapsulation did not
PDF
Album
Supp Info
Full Research Paper
Published 30 Dec 2019

Formation of metal/semiconductor Cu–Si composite nanostructures

  • Natalya V. Yumozhapova,
  • Andrey V. Nomoev,
  • Vyacheslav V. Syzrantsev and
  • Erzhena C. Khartaeva

Beilstein J. Nanotechnol. 2019, 10, 2497–2504, doi:10.3762/bjnano.10.240

Graphical Abstract
  • particle size distribution of 500 nanoparticles of each certain type. The average size of the core–shell particle does not exceed 100 nm, as observed from transmission electron microscopy images (Figure 6, Figure 7a). The results of the elemental mapping of nanoparticles (Figure 7b) shows that copper and
PDF
Album
Full Research Paper
Published 13 Dec 2019

Mannosylated brush copolymers based on poly(ethylene glycol) and poly(ε-caprolactone) as multivalent lectin-binding nanomaterials

  • Stefania Ordanini,
  • Wanda Celentano,
  • Anna Bernardi and
  • Francesco Cellesi

Beilstein J. Nanotechnol. 2019, 10, 2192–2206, doi:10.3762/bjnano.10.212

Graphical Abstract
  • size distribution by scattering intensity (%) was determined by the CONTIN algorithm, as provided by the Zetasizer software (Malvern, UK). Particle size distribution by volume (%) was calculated from the scattering intensity distributions by the Zetasizer software, by setting the refractive index of
  • : -CH2CH2CH2-), 1.25–0.77 (m, 3H·(y + x), -CH3,backbone). Particle size measurements by DLS DLS analyses of polymers (1 mg/mL, filtered solutions with PTFE 0.45 µm filters) were performed using a Malvern Instrument Zetasizer Nano ZS instrument equipped with a 4 mW He–Ne laser operating at λ = 634 nm. Particle
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2019

Synthesis of highly active ETS-10-based titanosilicate for heterogeneously catalyzed transesterification of triglycerides

  • Muhammad A. Zaheer,
  • David Poppitz,
  • Khavar Feyzullayeva,
  • Marianne Wenzel,
  • Jörg Matysik,
  • Radomir Ljupkovic,
  • Aleksandra Zarubica,
  • Alexander A. Karavaev,
  • Andreas Pöppl,
  • Roger Gläser and
  • Muslim Dvoyashkin

Beilstein J. Nanotechnol. 2019, 10, 2039–2061, doi:10.3762/bjnano.10.200

Graphical Abstract
  • min, but more pronounced for longer treatment times (Figure 8). Despite these defects, the particle size distribution probed by laser diffraction revealed minor changes suggesting that treatment neither leads to dissolution of smaller particles, nor to detectable fractioning of the larger ones (Figure
PDF
Album
Supp Info
Full Research Paper
Published 28 Oct 2019

Gold-coated plant virus as computed tomography imaging contrast agent

  • Alaa A. A. Aljabali,
  • Mazhar S. Al Zoubi,
  • Khalid M. Al-Batanyeh,
  • Ali Al-Radaideh,
  • Mohammad A. Obeid,
  • Abeer Al Sharabi,
  • Walhan Alshaer,
  • Bayan AbuFares,
  • Tasnim Al-Zanati,
  • Murtaza M. Tambuwala,
  • Naveed Akbar and
  • David J. Evans

Beilstein J. Nanotechnol. 2019, 10, 1983–1993, doi:10.3762/bjnano.10.195

Graphical Abstract
  • . The particle size distribution obtained from NTA analysis (Figure 2A) showed a peaks of 51 ± 2 nm, 71 ± 3 nm and 100 ± 5 nm, respectively, with over 90% of the particles being within the measured size thus confirming the narrow size distribution. CPMV (uncoated particles) have an average diameter of
  • DLS measurements were carried out per sample after 2 min waiting time to allow the solutions to be at rest. The hydrodynamic radius (intensity particle size distribution was used for all measurements) was calculated by the instrument from the translational diffusion coefficient using the Stokes
PDF
Album
Full Research Paper
Published 07 Oct 2019

Magnetic properties of biofunctionalized iron oxide nanoparticles as magnetic resonance imaging contrast agents

  • Natalia E. Gervits,
  • Andrey A. Gippius,
  • Alexey V. Tkachev,
  • Evgeniy I. Demikhov,
  • Sergey S. Starchikov,
  • Igor S. Lyubutin,
  • Alexander L. Vasiliev,
  • Vladimir P. Chekhonin,
  • Maxim A. Abakumov,
  • Alevtina S. Semkina and
  • Alexander G. Mazhuga

Beilstein J. Nanotechnol. 2019, 10, 1964–1972, doi:10.3762/bjnano.10.193

Graphical Abstract
  • within the coherent X-ray scattering region, and the size can be slightly different from the values obtained by transmission electron microscopy (TEM). The TEM images of the nanoparticles are presented in Figure 2. The particle size distribution estimated from the high-resolution TEM (HRTEM) images is
  • was used in our ZF-NMR experiment. XRD patterns of coated and uncoated magnetic nanoparticles. HRTEM images of uncoated (a) and HSA-functionalized samples (b). The particle size distribution estimated from the HRTEM images in Figure 2. Raman spectrum of uncoated nanoparticles. Fitting of the peaks in
PDF
Album
Full Research Paper
Published 02 Oct 2019
Other Beilstein-Institut Open Science Activities