Search results

Search for "phase-locked loop" in Full Text gives 32 result(s) in Beilstein Journal of Nanotechnology.

Graphical Abstract
  • provides information and guidelines that can be useful in selecting the most appropriate operation mode to characterize different samples in the most efficient and reliable way. Keywords: amplitude-modulation; atomic force microscopy; frequency-modulation; phase-locked loop; spectroscopy; Introduction
  • scheme of the AM-FM mode Figure 1 shows a diagram of the experimental setup used, which consists of a commercial AFM system (MFP3D with ARC2 controller, Asylum Research Corporation, Santa Barbara, CA, USA) equipped with external phase-locked loop (PLL) electronics (PLL Pro 2, RHK Technology, Troy, MI
  • amplitudes and phase shifts at each eigenmode of the cantilever. In contrast, the CE version of AM-FM requires either a phase-locked-loop (PLL) or a self-excitation (phase-shift-based) loop to keep the phase locked at 90 degrees (so far we have observed that self-excitation loops are less stable in tapping
PDF
Album
Full Research Paper
Published 18 Mar 2013

Thermal noise limit for ultra-high vacuum noncontact atomic force microscopy

  • Jannis Lübbe,
  • Matthias Temmen,
  • Sebastian Rode,
  • Philipp Rahe,
  • Angelika Kühnle and
  • Michael Reichling

Beilstein J. Nanotechnol. 2013, 4, 32–44, doi:10.3762/bjnano.4.4

Graphical Abstract
  • commonly performed by a phase-locked loop (PLL) circuit [2]. As schematically depicted in Figure 1, the amplitude response of the PLL unit can formally be decomposed into the amplitude response Gdemod of the demodulator and the amplitude response Gfilter of an in-loop or output filter. The characteristics
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2013

Drive-amplitude-modulation atomic force microscopy: From vacuum to liquids

  • Miriam Jaafar,
  • David Martínez-Martín,
  • Mariano Cuenca,
  • John Melcher,
  • Arvind Raman and
  • Julio Gómez-Herrero

Beilstein J. Nanotechnol. 2012, 3, 336–344, doi:10.3762/bjnano.3.38

Graphical Abstract
  • the driving force as the feedback variable for topography. Additionally, a phase-locked loop can be used as a parallel feedback allowing separation of the conservative and nonconservative interactions. We describe the basis of this mode and present some examples of its performance in three different
  • constant by adjusting the amplitude of the driving force. A phase-locked loop (PLL) tracks the effective resonance frequency of the cantilever as it varies as a consequence of the tip–sample interaction. In FM, the position of the scanner in the z-direction is adjusted to keep the frequency shift constant
PDF
Album
Supp Info
Full Research Paper
Published 18 Apr 2012

Graphite, graphene on SiC, and graphene nanoribbons: Calculated images with a numerical FM-AFM

  • Fabien Castanié,
  • Laurent Nony,
  • Sébastien Gauthier and
  • Xavier Bouju

Beilstein J. Nanotechnol. 2012, 3, 301–311, doi:10.3762/bjnano.3.34

Graphical Abstract
  • dynamic behavior of the oscillator. Briefly speaking, an important element of the FM-AFM experimental apparatus is the frequency detection by demodulation performed with the aid of a phase-locked loop (PLL). This allows measurement of the frequency shift Δf from the fundamental resonance frequency of the
PDF
Album
Full Research Paper
Published 02 Apr 2012

A measurement of the hysteresis loop in force-spectroscopy curves using a tuning-fork atomic force microscope

  • Manfred Lange,
  • Dennis van Vörden and
  • Rolf Möller

Beilstein J. Nanotechnol. 2012, 3, 207–212, doi:10.3762/bjnano.3.23

Graphical Abstract
  • oscillation a phase-locked-loop system supplied by Specs Zürich (Nanonis) is used. Scanning control and data acquisition are performed by the open-source software GXSM [23] combined with home-built electronics. For image processing the free software WSXM [24] is used. Sample preparation was performed as
PDF
Album
Full Research Paper
Published 08 Mar 2012

Molecular-resolution imaging of pentacene on KCl(001)

  • Julia L. Neff,
  • Jan Götzen,
  • Enhui Li,
  • Michael Marz and
  • Regina Hoffmann-Vogel

Beilstein J. Nanotechnol. 2012, 3, 186–191, doi:10.3762/bjnano.3.20

Graphical Abstract
  • measurements were carried out by using a phase-locked-loop frequency demodulator from Nanonis (SPECS, Zürich, Switzerland). Typical resonance frequencies f0 and spring constants k of the cantilevers were 160 kHz and 45 N/m, respectively. Samples were investigated at room temperature and afterwards at low
PDF
Album
Full Research Paper
Published 29 Feb 2012

Distinguishing magnetic and electrostatic interactions by a Kelvin probe force microscopy–magnetic force microscopy combination

  • Miriam Jaafar,
  • Oscar Iglesias-Freire,
  • Luis Serrano-Ramón,
  • Manuel Ricardo Ibarra,
  • Jose Maria de Teresa and
  • Agustina Asenjo

Beilstein J. Nanotechnol. 2011, 2, 552–560, doi:10.3762/bjnano.2.59

Graphical Abstract
  • dynamical modes. The tip–cantilever system oscillates at a certain frequency with a given amplitude. Due to the presence of an interaction between the tip and the sample, the amplitude and the phase of the oscillation change. In our experiments we use a PLL (Phase Locked Loop) system to keep the phase
PDF
Album
Supp Info
Full Research Paper
Published 07 Sep 2011
Other Beilstein-Institut Open Science Activities