Search results

Search for "photocatalysis" in Full Text gives 134 result(s) in Beilstein Journal of Nanotechnology.

First-principles study of the structural, optoelectronic and thermophysical properties of the π-SnSe for thermoelectric applications

  • Muhammad Atif Sattar,
  • Najwa Al Bouzieh,
  • Maamar Benkraouda and
  • Noureddine Amrane

Beilstein J. Nanotechnol. 2021, 12, 1101–1114, doi:10.3762/bjnano.12.82

Graphical Abstract
  • infrared range. Alternatively, the π-SnSe is expected to be effective closer to the visible range, with technological implications in solar cells, thermoelectric applications, and photocatalysis [78]. The broader region along with the high values of the absorption coefficient for the π-SnSe indicates that
PDF
Album
Full Research Paper
Published 05 Oct 2021

Assessment of the optical and electrical properties of light-emitting diodes containing carbon-based nanostructures and plasmonic nanoparticles: a review

  • Keshav Nagpal,
  • Erwan Rauwel,
  • Frédérique Ducroquet and
  • Protima Rauwel

Beilstein J. Nanotechnol. 2021, 12, 1078–1092, doi:10.3762/bjnano.12.80

Graphical Abstract
  • ); plasmonic nanoparticles; quantum dots; Review Introduction Nanomaterials have engendered the miniaturization of devices, bringing about advances in a variety of fields, such as biomedicine, environmental technologies, optoelectronics, and photocatalysis [1][2]. In particular, light-emitting diodes (LED
PDF
Album
Review
Published 24 Sep 2021

Boosting of photocatalytic hydrogen evolution via chlorine doping of polymeric carbon nitride

  • Malgorzata Aleksandrzak,
  • Michalina Kijaczko,
  • Wojciech Kukulka,
  • Daria Baranowska,
  • Martyna Baca,
  • Beata Zielinska and
  • Ewa Mijowska

Beilstein J. Nanotechnol. 2021, 12, 473–484, doi:10.3762/bjnano.12.38

Graphical Abstract
  • ; doping; hydrogen evolution reaction; photocatalysis; polymeric carbon nitride; Introduction Currently, the biggest problems of civilization seem to be the global energy crisis and environmental pollution. Both of these problems are directly related to each other. The pollution of our planet is mainly
  • due to fossil fuels used in the energy industry, the combustion of which generates CO2 emissions. The ideal solution of these problems appears to be the use of photocatalysis. The solar light, as a driving force, has been widely used in different fields, such as water in water-splitting to generate
  • photocatalysis by imparting additional merits of each of the co-dopants of the photocatalyst. Polymeric carbon nitride has been co-doped with B/F [36], S/P [37], or C/P [38]. Yi et al. showed that PCN co-doped with S and Cl had better catalytic efficiency in the degradation of rhodamine B and 4-nitrophenol under
PDF
Album
Full Research Paper
Published 19 May 2021

Unravelling the interfacial interaction in mesoporous SiO2@nickel phyllosilicate/TiO2 core–shell nanostructures for photocatalytic activity

  • Bridget K. Mutuma,
  • Xiluva Mathebula,
  • Isaac Nongwe,
  • Bonakele P. Mtolo,
  • Boitumelo J. Matsoso,
  • Rudolph Erasmus,
  • Zikhona Tetana and
  • Neil J. Coville

Beilstein J. Nanotechnol. 2020, 11, 1834–1846, doi:10.3762/bjnano.11.165

Graphical Abstract
  • nanostructures are attractive candidates for photocatalysis owing to their tunable physicochemical properties, their interfacial contact effects, and their efficacy in charge-carrier separation. This study reports, for the first time, on the synthesis of mesoporous silica@nickel phyllosilicate/titania (mSiO2
  • brookite phases, the anatase phase has been extensively used for photocatalysis owing to its enhanced surface properties [7][8][9][10]. In a typical photocatalytic process, photons of energy greater than the bandgap energy of TiO2 excite electrons to the conduction band leaving holes in the valence band
PDF
Album
Supp Info
Full Research Paper
Published 09 Dec 2020

Nanocasting synthesis of BiFeO3 nanoparticles with enhanced visible-light photocatalytic activity

  • Thomas Cadenbach,
  • Maria J. Benitez,
  • A. Lucia Morales,
  • Cesar Costa Vera,
  • Luis Lascano,
  • Francisco Quiroz,
  • Alexis Debut and
  • Karla Vizuete

Beilstein J. Nanotechnol. 2020, 11, 1822–1833, doi:10.3762/bjnano.11.164

Graphical Abstract
  • radical trapping experiments. Keywords: bismuth ferrite (BiFeO3); dye; nanocasting; nanoparticles; photocatalysis; rhodamine B; SBA-15; Introduction In the face of a continuously growing demand, the production of safe and readily available water is one of the biggest challenges humanity is facing
  • the production of secondary waste products that require further treatment. Advanced oxidation processes, in general, and heterogeneous semiconductor photocatalysis, in particular, are promising candidates to efficiently treat wastewater as they are cost-effective and green treatment methods in which
  • separate the catalyst powder from the solution. The absorbance of each sample during photocatalysis was measured at the maximum absorption peak of RhB. Characterization techniques and equipment The structure and phase purity of the nanomaterials synthesized here were characterized using powder X-ray
PDF
Album
Supp Info
Full Research Paper
Published 07 Dec 2020

Effect of Ag loading position on the photocatalytic performance of TiO2 nanocolumn arrays

  • Jinghan Xu,
  • Yanqi Liu and
  • Yan Zhao

Beilstein J. Nanotechnol. 2020, 11, 717–728, doi:10.3762/bjnano.11.59

Graphical Abstract
  • ) of Ag and the absorption of light by TiO2. These results represent a promising step forward to the development of high-performance photocatalysts for energy conversion and storage. Keywords: anodic aluminum oxide template; nanocolumn arrays; photocatalysis; surface plasmon resonance; Introduction
  • Since 1972, when Shimada and Honda discovered the photocatalysis of titanium dioxide (TiO2) under ultraviolet light, research in this field has continued to grow [1]. Recently, TiO2 has been utilized in the fields of photocatalytic water decomposition [2], photocatalytic organic degradation [3], and
  • photocatalysis was performed under 300 W Xe light using 15 mL of a 5 ppm MB aqueous solution. Before starting the photocatalysis, the sample was immersed in the MB solution and allowed to remain in the dark for 30 min to reach the adsorption–desorption balance. Then, the solution was placed under a light source
PDF
Album
Full Research Paper
Published 05 May 2020

Preparation, characterization and photocatalytic performance of heterostructured CuO–ZnO-loaded composite nanofiber membranes

  • Wei Fang,
  • Liang Yu and
  • Lan Xu

Beilstein J. Nanotechnol. 2020, 11, 631–650, doi:10.3762/bjnano.11.50

Graphical Abstract
  • three times, and the degradation rate remained above 90%. Keywords: electrospinning; composite nanofibers; heterostructured CuO–ZnO; hydrothermal synthesis; photocatalysis; semiconductor oxide; Introduction Water remediation is one of the main scientific research subjects regarding environmental
  • , electrical, mechanical and chemical properties, which might result in applications in photocatalysis [26]. Electrospinning is a simple and convenient method for preparing composite nanofibers (CNFs) [27][28][29][30][31]. CNFs have been widely applied as carrier material due to their outstanding
  • electrospinning and observed their photocatalytic performance. Yuan et al. [35] obtained TiO2/WO3 CNFs using electrospinning and applied them in the photocatalytic removal of mercury. Teng et al. [36] prepared TiO2/NiO CNFs by electrospinning and used them for photocatalysis. Polyacrylonitrile (PAN) has been
PDF
Album
Full Research Paper
Published 15 Apr 2020

Adsorptive removal of bulky dye molecules from water with mesoporous polyaniline-derived carbon

  • Hyung Jun An,
  • Jong Min Park,
  • Nazmul Abedin Khan and
  • Sung Hwa Jhung

Beilstein J. Nanotechnol. 2020, 11, 597–605, doi:10.3762/bjnano.11.47

Graphical Abstract
  • quantity of dyes can affect the color of the water). The removal of dye molecules from contaminated water is very important and has been carried out via various methods such as oxidation [3][4], including advanced oxidation processing (AOP), photocatalysis [5], biological treatment, coagulation, and
PDF
Album
Supp Info
Full Research Paper
Published 08 Apr 2020

Atomic-resolution imaging of rutile TiO2(110)-(1 × 2) reconstructed surface by non-contact atomic force microscopy

  • Daiki Katsube,
  • Shoki Ojima,
  • Eiichi Inami and
  • Masayuki Abe

Beilstein J. Nanotechnol. 2020, 11, 443–449, doi:10.3762/bjnano.11.35

Graphical Abstract
  • important to understand the reaction process, hence investigations of chemical and physical surface characteristics and the structure of the photocatalyst are necessary. The rutile TiO2(110) surface has often been the subject of atomic-level studies in the field of photocatalysis since the preparation of a
PDF
Album
Full Research Paper
Published 10 Mar 2020

Electrochemically derived functionalized graphene for bulk production of hydrogen peroxide

  • Munaiah Yeddala,
  • Pallavi Thakur,
  • Anugraha A and
  • Tharangattu N. Narayanan

Beilstein J. Nanotechnol. 2020, 11, 432–442, doi:10.3762/bjnano.11.34

Graphical Abstract
  • preparation of H2O2 from oxygen and hydrogen, oxidation of alcohols [5], photocatalysis [6], and electrochemical processes such as the electro-Fenton process [7], microbial electrosynthesis [8], and proton exchange membrane (PEM) assisted synthesis [9]. Further, in situ generation of peroxide from dissolved
PDF
Album
Supp Info
Full Research Paper
Published 09 Mar 2020

Synthesis and enhanced photocatalytic performance of 0D/2D CuO/tourmaline composite photocatalysts

  • Changqiang Yu,
  • Min Wen,
  • Zhen Tong,
  • Shuhua Li,
  • Yanhong Yin,
  • Xianbin Liu,
  • Yesheng Li,
  • Tongxiang Liang,
  • Ziping Wu and
  • Dionysios D. Dionysiou

Beilstein J. Nanotechnol. 2020, 11, 407–416, doi:10.3762/bjnano.11.31

Graphical Abstract
  • of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA Chongyi Zhangyuan Tungsten Co., Ltd., Ganzhou 341000, China 10.3762/bjnano.11.31 Abstract Photocatalysis is considered to be a green and promising technology for transforming organic contaminants into
PDF
Album
Supp Info
Full Research Paper
Published 02 Mar 2020

DFT calculations of the structure and stability of copper clusters on MoS2

  • Cara-Lena Nies and
  • Michael Nolan

Beilstein J. Nanotechnol. 2020, 11, 391–406, doi:10.3762/bjnano.11.30

Graphical Abstract
  • to alter the surface from semiconducting to metallic. This selective alteration of the electronic properties through functionalisation makes 2D monolayers attractive candidates for various applications, such as photocatalysis, sensors and electronic devices. Other work from Ersan et al. [30] focused
PDF
Album
Supp Info
Full Research Paper
Published 26 Feb 2020

Fabrication of Ag-modified hollow titania spheres via controlled silver diffusion in Ag–TiO2 core–shell nanostructures

  • Bartosz Bartosewicz,
  • Malwina Liszewska,
  • Bogusław Budner,
  • Marta Michalska-Domańska,
  • Krzysztof Kopczyński and
  • Bartłomiej J. Jankiewicz

Beilstein J. Nanotechnol. 2020, 11, 141–146, doi:10.3762/bjnano.11.12

Graphical Abstract
  • (HSs) have received increasing attention due to their potential application in a variety of areas [1][2][3][4] such as solar energy conversion or photocatalysis [2][5][6][7]. Among them, of great interest are TiO2 HSs modified with plasmonic nanoparticles (NPs), which allow for the combination of the
  • fabricated in a multistep process including a two-step hydrothermal treatment [11]. Ag-modified TiO2 HSs showing efficient photocatalysis in the visible-light range were synthesized in a multistep process through a sacrificial core technique using AgBr as the core [12]. A hard-templating method with a silica
  • range than the Ag–TiO2 CSNs they are made from. In addition, a significant number of AgNPs can be observed on their surface and, therefore, based on the existing literature, these nanostructures should be of great interest for applications in solar light-driven photocatalysis and photovoltaics [30
PDF
Album
Supp Info
Letter
Published 10 Jan 2020

Air oxidation of sulfur mustard gas simulants using a pyrene-based metal–organic framework photocatalyst

  • Ghada Ayoub,
  • Mihails Arhangelskis,
  • Xuan Zhang,
  • Florencia Son,
  • Timur Islamoglu,
  • Tomislav Friščić and
  • Omar K. Farha

Beilstein J. Nanotechnol. 2019, 10, 2422–2427, doi:10.3762/bjnano.10.232

Graphical Abstract
  • ; photocatalysis; singlet oxygen; sulfur mustard gas; Introduction Sulfur mustard gas also known as mustard gas, HD, or Yperite belongs to a class of chemical warfare agents (CWAs) known as vesicants, which have detrimental effects on humans, including the blistering of skin upon contact [1]. Even at a low dosage
PDF
Album
Supp Info
Full Research Paper
Published 09 Dec 2019

Optimization and performance of nitrogen-doped carbon dots as a color conversion layer for white-LED applications

  • Tugrul Guner,
  • Hurriyet Yuce,
  • Didem Tascioglu,
  • Eren Simsek,
  • Umut Savaci,
  • Aziz Genc,
  • Servet Turan and
  • Mustafa M. Demir

Beilstein J. Nanotechnol. 2019, 10, 2004–2013, doi:10.3762/bjnano.10.197

Graphical Abstract
  • applications, including bio-imaging [6][7], drug and gene delivery [8], sensors [9][10], photocatalysis [11], energy storage [12][13] and white-light-emitting diodes (WLEDs) [14][15]. Typically, these materials contain an internal carbon core, conjugated sp2 domains and some functional groups attached to their
PDF
Album
Supp Info
Full Research Paper
Published 15 Oct 2019

Pulsed laser synthesis of highly active Ag–Rh and Ag–Pt antenna–reactor-type plasmonic catalysts

  • Kenneth A. Kane and
  • Massimo F. Bertino

Beilstein J. Nanotechnol. 2019, 10, 1958–1963, doi:10.3762/bjnano.10.192

Graphical Abstract
  • dissipation, the experiments concluded that charge carriers produced in the Pt shell via LSPR excitation from the Ag nanocube core could be utilized for surface chemistry. Similarly, Zhang et al. coined the term “antenna–reactor” photocatalysis by fabricating Al, surrounded by a thin layer of Al2O3, as a
  • plasmonic metal (antenna) and Pd NPs as catalyst (reactor), where Al2O3 prevented the contact between Ag and Pd [19]. After observing an enhanced reduction of acetylene and dissociation of H2 via photocatalysis, it was concluded that a plasmonic antenna can focus light onto the catalytic reactor and induce
PDF
Album
Supp Info
Letter
Published 26 Sep 2019

Selective gas detection using Mn3O4/WO3 composites as a sensing layer

  • Yongjiao Sun,
  • Zhichao Yu,
  • Wenda Wang,
  • Pengwei Li,
  • Gang Li,
  • Wendong Zhang,
  • Lin Chen,
  • Serge Zhuivkov and
  • Jie Hu

Beilstein J. Nanotechnol. 2019, 10, 1423–1433, doi:10.3762/bjnano.10.140

Graphical Abstract
  • color because of its oxygen vacancy, which is an important reason why WO3 exhibits n-type semiconductor characteristics. WO3 is a multifunctional semiconductor material and widely used in phototropism [1], electrochromism [2], photocatalysis [3], electrochemistry [4], gas sensing [5] and other fields
PDF
Album
Supp Info
Full Research Paper
Published 17 Jul 2019

BiOCl/TiO2/diatomite composites with enhanced visible-light photocatalytic activity for the degradation of rhodamine B

  • Minlin Ao,
  • Kun Liu,
  • Xuekun Tang,
  • Zishun Li,
  • Qian Peng and
  • Jing Huang

Beilstein J. Nanotechnol. 2019, 10, 1412–1422, doi:10.3762/bjnano.10.139

Graphical Abstract
  • for wide application in the field of sewage treatment driven by solar energy. Keywords: BiOCl; diatomite; photocatalysis; sewage treatment; TiO2; visible-light photocatalysis; Introduction In recent decades, with intense industry development and worldwide social economy growth, the discharge of
  • nature as a whole. In recent years, advanced oxidation processes including Fenton [3], Fenton-like [4][5][6] and photocatalysis [7] reactions have been widely used in wastewater treatment. In addition, photocatalysis has attracted great attention due to advantages such as environmental sustainability
  • , low-cost and ease of application, which are superior to other approaches of environmental remediation [8][9]. However, the application of photocatalysis is still hindered due to the agglomeration of photocatalyst particles, the difficulty of photocatalyst recovery and low photocatalytic performance
PDF
Album
Supp Info
Full Research Paper
Published 16 Jul 2019

Construction of a 0D/1D composite based on Au nanoparticles/CuBi2O4 microrods for efficient visible-light-driven photocatalytic activity

  • Weilong Shi,
  • Mingyang Li,
  • Hongji Ren,
  • Feng Guo,
  • Xiliu Huang,
  • Yu Shi and
  • Yubin Tang

Beilstein J. Nanotechnol. 2019, 10, 1360–1367, doi:10.3762/bjnano.10.134

Graphical Abstract
  • , Zhenjiang, Jiangsu 212018, PR China School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China 10.3762/bjnano.10.134 Abstract Photocatalysis is considered to be a promising technique for the degradation of organic pollutants. Herein, a 0D/1D composite
  • , enhancing photoresponse and providing more active sites. Our work shows a possible design of efficient photocatalysts for environmental remediation. Keywords: Au nanoparticles; 0D/1D composite; CuBi2O4 microrods; photocatalysis; photocatalytic degradation; Introduction Heterogeneous semiconductor
  • photocatalysis as an advanced green technology has been widely studied and applied for the removal of organic pollutants from water [1][2][3]. The catalytic activity of many wide-bandgap (Eg) semiconductor photocatalysts is restricted to UV light radiation, which is only 5% of the solar spectrum. Hence, the
PDF
Album
Supp Info
Full Research Paper
Published 04 Jul 2019

A highly efficient porous rod-like Ce-doped ZnO photocatalyst for the degradation of dye contaminants in water

  • Binjing Hu,
  • Qiang Sun,
  • Chengyi Zuo,
  • Yunxin Pei,
  • Siwei Yang,
  • Hui Zheng and
  • Fangming Liu

Beilstein J. Nanotechnol. 2019, 10, 1157–1165, doi:10.3762/bjnano.10.115

Graphical Abstract
  • ]. Recently, photocatalytic degradation of organic dyes using semiconductors has attracted much attention [6]. This refers to the process in which organic compounds are gradually oxidized into inorganic compounds or even H2O and CO2 under the synergistic effects of light and photocatalysis. ZnO is one of the
  • most suitable catalysts in many industries given its inexpensive, non-toxic, efficient and anti-corrosion properties [7]. Nevertheless, it still has some disadvantages with respect to photocatalysis. For example, it has a narrow response range, low quantum efficiency, and its photogenerated electron
  • ]. In recent years, metal organic frameworks (MOFs) have been intensively investigated and widely utilized in various fields, such as electrocatalysis [14], heterogeneous catalysis [15] and photocatalysis [16]. Yang et al. [17] reported that Ga-MOF displayed moderate to high catalytic activity of
PDF
Album
Full Research Paper
Published 03 Jun 2019

Photoactive nanoarchitectures based on clays incorporating TiO2 and ZnO nanoparticles

  • Eduardo Ruiz-Hitzky,
  • Pilar Aranda,
  • Marwa Akkari,
  • Nithima Khaorapapong and
  • Makoto Ogawa

Beilstein J. Nanotechnol. 2019, 10, 1140–1156, doi:10.3762/bjnano.10.114

Graphical Abstract
  • materials that have been assembled at the nanometer scale with clay silicates and deeply investigated due to their useful properties for various applications, including heterogeneous photocatalysis, antibacterial activity, and water splitting [12][13][14][15][16][17][18][19][20]. Both semiconducting solids
  • more suitable for photocatalytic reactions; vi) to facilitate percolation in membrane or column designs for the easier separation and collection of products; and vii) to enable molecular recognition in photocatalysis through the well-defined nanopores in the inorganic component. Well-defined nanoporous
  • extensively studied clay–semiconductor systems for photocatalysis applications. Various procedures have been reported to produce kaolinite clay mineral fully coated with TiO2 NPs [94][95][96][97][98]. An example of these methods is the in situ formation of titanium dioxide and its anchorage on the external
PDF
Album
Review
Published 31 May 2019

Synthesis of novel C-doped g-C3N4 nanosheets coupled with CdIn2S4 for enhanced photocatalytic hydrogen evolution

  • Jingshuai Chen,
  • Chang-Jie Mao,
  • Helin Niu and
  • Ji-Ming Song

Beilstein J. Nanotechnol. 2019, 10, 912–921, doi:10.3762/bjnano.10.92

Graphical Abstract
  • . Keywords: C-doped g-C3N4; CdIn2S4; composite materials; hydrogen generation; photocatalysis; Introduction The serious environmental concerns and increasing global energy demand have instigated growing awareness in the field of alternative energy generation over the past few decades. Photocatalysis
PDF
Album
Full Research Paper
Published 18 Apr 2019

Fabrication of silver nanoisland films by pulsed laser deposition for surface-enhanced Raman spectroscopy

  • Bogusław Budner,
  • Mariusz Kuźma,
  • Barbara Nasiłowska,
  • Bartosz Bartosewicz,
  • Malwina Liszewska and
  • Bartłomiej J. Jankiewicz

Beilstein J. Nanotechnol. 2019, 10, 882–893, doi:10.3762/bjnano.10.89

Graphical Abstract
  • the size, shape, and arrangements of nanostructures, the material they are made of and the surrounding medium [6]. One of the easiest nanostructures to produce are metallic nanoparticles (NPs). Alone or in composites with other materials, they find numerous applications in plasmonic photocatalysis [7
PDF
Album
Supp Info
Full Research Paper
Published 16 Apr 2019

Rapid, ultraviolet-induced, reversibly switchable wettability of superhydrophobic/superhydrophilic surfaces

  • Yunlu Pan,
  • Wenting Kong,
  • Bharat Bhushan and
  • Xuezeng Zhao

Beilstein J. Nanotechnol. 2019, 10, 866–873, doi:10.3762/bjnano.10.87

Graphical Abstract
  • photocatalysis material that has attracted attention since it is more sensitive to UV light [17]. The use of a photochemical method to strengthen the interaction between nanoparticles and organic materials is quite common [18][19]. TiO2 nanoparticles modified with organic materials that have a low surface energy
  • of the faster transition process has not explained. Due to the high energy of UV illumination and the photocatalysis effect of TiO2, the –CF2−, –CF3 groups of the modified trimethoxy(alkyl)silane might become photodegraded and the end of the trimethoxy(alkyl)silane would change into –OH groups
PDF
Album
Full Research Paper
Published 15 Apr 2019

On the transformation of “zincone”-like into porous ZnO thin films from sub-saturated plasma enhanced atomic layer deposition

  • Alberto Perrotta,
  • Julian Pilz,
  • Stefan Pachmajer,
  • Antonella Milella and
  • Anna Maria Coclite

Beilstein J. Nanotechnol. 2019, 10, 746–759, doi:10.3762/bjnano.10.74

Graphical Abstract
  • oxides in photocatalysis [30][33] and as electrodes for lithium-ion batteries [12][18], or for protective and passivating layers [28][32][35]. In this contribution, an alternative method was adopted for the formation of Zn-alkoxide layers. While ALD is known to deliver pure dense ZnO, applied in many
  • orientation. The insight obtained in this study could foster further research on Zn-alkoxide-derived porous ZnO, with important applications, e.g., in photocatalysis and biosensing. a) Growth per cycle (GPC) as a function of the plasma dose time. The saturation of the PE-ALD ZnO recipe was reached at 6 s of
PDF
Album
Supp Info
Full Research Paper
Published 21 Mar 2019
Other Beilstein-Institut Open Science Activities