Search results

Search for "plasma" in Full Text gives 598 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Fabrication of hafnium-based nanoparticles and nanostructures using picosecond laser ablation

  • Abhishek Das,
  • Mangababu Akkanaboina,
  • Jagannath Rathod,
  • R. Sai Prasad Goud,
  • Kanaka Ravi Kumar,
  • Raghu C. Reddy,
  • Ratheesh Ravendran,
  • Katia Vutova,
  • S. V. S. Nageswara Rao and
  • Venugopal Rao Soma

Beilstein J. Nanotechnol. 2024, 15, 1639–1653, doi:10.3762/bjnano.15.129

Graphical Abstract
  • liquid medium. The target material absorbs the pulse energy via the electrons. It transfers it to the lattice, which expulses the surface material as a plasma plume confined because of the pressure created by the surrounding liquid [16][20][23][24]. A cavitation bubble is formed as the energy is
  • transferred to the surrounding liquid from the decaying plasma because of the existing temperature differences between the liquid and the plasma plume, leading to the emergence of a vapour layer with a volume equivalent to the plasma plume [16][20][23][24]. The cavitation bubble collapses because of cyclic
  • of the surrounding H2O molecules due to the laser energy [23][24][40]. This leads to the reaction of oxygen with Hf4+ ions in the plasma plume formed during the ablation [16][20][23][24][41], leading to the formation of hafnium oxide vapour as the plasma decays. As the pressure of the surrounding
PDF
Album
Full Research Paper
Published 18 Dec 2024

Heterogeneous reactions in a HFCVD reactor: simulation using a 2D model

  • Xochitl Aleyda Morán Martínez,
  • José Alberto Luna López,
  • Zaira Jocelyn Hernández Simón,
  • Gabriel Omar Mendoza Conde,
  • José Álvaro David Hernández de Luz and
  • Godofredo García Salgado

Beilstein J. Nanotechnol. 2024, 15, 1627–1638, doi:10.3762/bjnano.15.128

Graphical Abstract
  • -dimensional (2D) and three-dimensional (3D) systems is a tool that allows us to understand the key steps regarding the reproducibility and uniformity of the films [19][20]. From a computational point of view, prior works focused on the growth mechanism of SiOx in a plasma-enhanced chemical vapor deposition
  • form atomic hydrogen, which reacts with the eleven solid quartz sources. A cloud or plasma is formed and finally reaches the substrate for the formation of the thin films. Finally, zone three is the exit of the gases that were not deposited in the film. The entire process is carried out under
  • interaction with the walls. In a study of the deposition of silicon dioxide using an atmospheric-pressure plasma-enhanced CVD reactor, the reactor performance was shown to be strongly affected by the flow dynamics [33][34]. Distribution and concentration of species As previously mentioned, temperature and
PDF
Album
Full Research Paper
Published 17 Dec 2024

Liver-targeting iron oxide nanoparticles and their complexes with plant extracts for biocompatibility

  • Shushanik A. Kazaryan,
  • Seda A. Oganian,
  • Gayane S. Vardanyan,
  • Anatolie S. Sidorenko and
  • Ashkhen A. Hovhannisyan

Beilstein J. Nanotechnol. 2024, 15, 1593–1602, doi:10.3762/bjnano.15.125

Graphical Abstract
  • were Fe3O4 NPs with rutin, there is no increase observed in either ALP (11.06 ± 0.01 U/L) or GGT (13.33 ± 0.14 U/L). Assessment of the effect on lipid metabolism In the plasma of male Wistar rats in the control group, the normal level of total cholesterol reaches 2.87 ± 0.16 mM/L, HDL cholesterol is
  • the activities of the formed complexes. In all groups, except IV and VI, there is an increase in ALP activity (Figure 3). This enzyme exists in the body in the form of five different isoforms with different localizations (liver, bile ducts, kidneys, bones, and placenta). Normally, plasma activity
  • the increase in plasma ALP activity is due to the bone isoform of this enzyme [56][57]. However, in group IV, where only Fe3O4 NPs with rutin were administered, no increase in either ALP or GGT was observed. Furthermore, according to literature data, the action of Fe3O4 NPs is dose-dependent, and
PDF
Album
Full Research Paper
Published 11 Dec 2024

Facile synthesis of size-tunable L-carnosine-capped silver nanoparticles and their role in metal ion sensing and catalytic degradation of p-nitrophenol

  • Akash Kumar,
  • Ridhima Chadha,
  • Abhishek Das,
  • Nandita Maiti and
  • Rayavarapu Raja Gopal

Beilstein J. Nanotechnol. 2024, 15, 1576–1592, doi:10.3762/bjnano.15.124

Graphical Abstract
  • heavy metal ion monitoring in environmental samples involve complex analytical instrumental techniques such as atomic absorption spectroscopy, inductively coupled plasma mass spectrometry, and high-performance liquid chromatography [8][9]. Environmental remediation of P-NP requires processes such as
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2024

Polymer lipid hybrid nanoparticles for phytochemical delivery: challenges, progress, and future prospects

  • Iqra Rahat,
  • Pooja Yadav,
  • Aditi Singhal,
  • Mohammad Fareed,
  • Jaganathan Raja Purushothaman,
  • Mohammed Aslam,
  • Raju Balaji,
  • Sonali Patil-Shinde and
  • Md. Rizwanullah

Beilstein J. Nanotechnol. 2024, 15, 1473–1497, doi:10.3762/bjnano.15.118

Graphical Abstract
  • rapidly metabolized by liver enzymes and cleared from the body through renal or biliary excretion, resulting in short plasma half-lives and requiring frequent dosing to maintain effective therapeutic levels. This rapid clearance reduces the duration of action, making it challenging to achieve sustained
  • effectiveness [34][35]. In addition, conventional delivery systems often cannot provide controlled or sustained release of phytochemicals, leading to fluctuating plasma levels. These fluctuations can result in suboptimal therapeutic effects and increased side effects. Lack of controlled release is particularly
  • circulation and is rapidly eliminated from the body. Therefore, RVT exhibits a very short plasma half-life and very low oral bioavailability These factors significantly reduce its therapeutic efficacy [106][107]. In a study, Kumar et al. fabricated RVT-encapsulated core–shell-type PLHNPs (RVT-PLHNPs) for
PDF
Album
Review
Published 22 Nov 2024

A biomimetic approach towards a universal slippery liquid infused surface coating

  • Ryan A. Faase,
  • Madeleine H. Hummel,
  • AnneMarie V. Hasbrook,
  • Andrew P. Carpenter and
  • Joe E. Baio

Beilstein J. Nanotechnol. 2024, 15, 1376–1389, doi:10.3762/bjnano.15.111

Graphical Abstract
  • through van der Waals forces, and capillary forces if there is a rough surface, forces which give way to conditions that are energetically favorable to the retention of the infused liquid as opposed to a foreign one. The preparation of SLIPS substrates include plasma treatments [4][12], acid/base soaks [1
  • ][13], anodization [3][14], silane chemistry [18], and polymer multilayers [5][15]. While these methods are effective, there is often a requirement for a specific chemical environment, like a plasma processing step or the growth of an oxide layer. In this investigation, we aim to simplify the
  • plasma clotting kinetics on SLIPS surfaces have not been studied previously. Therefore, to assess the hemocompatibity of our newly created PDA-based SLIPS coating, we tested the resistance of the coating to FXII activation, clot formation, clot stability, and platelet adhesion. FXII activation gives
PDF
Album
Supp Info
Full Research Paper
Published 08 Nov 2024

New design of operational MEMS bridges for measurements of properties of FEBID-based nanostructures

  • Bartosz Pruchnik,
  • Krzysztof Kwoka,
  • Ewelina Gacka,
  • Dominik Badura,
  • Piotr Kunicki,
  • Andrzej Sierakowski,
  • Paweł Janus,
  • Tomasz Piasecki and
  • Teodor Gotszalk

Beilstein J. Nanotechnol. 2024, 15, 1273–1282, doi:10.3762/bjnano.15.103

Graphical Abstract
  • (Si3N4) layer was deposited via CVD. The 40 nm thick platinum paths were then patterned by lift-off photolithography. The opMEMS bridge body was defined photolithographically with a feature size of 2 µm, etched by dry oxygen plasma etching (DRIE) and then released by KOH anisotropic wet silicon etching
PDF
Album
Full Research Paper
Published 23 Oct 2024

The role of a tantalum interlayer in enhancing the properties of Fe3O4 thin films

  • Hai Dang Ngo,
  • Vo Doan Thanh Truong,
  • Van Qui Le,
  • Hoai Phuong Pham and
  • Thi Kim Hang Pham

Beilstein J. Nanotechnol. 2024, 15, 1253–1259, doi:10.3762/bjnano.15.101

Graphical Abstract
  • ) substrate using RF magnetron sputtering. This was followed by the formation of a 5 nm thick layer of MgO. The Fe3O4 layers were applied using RF magnetron sputtering at a base pressure of 10−8 Torr, employing a flow of 33 sccm of Ar gas to maintain a stable plasma. The initially deposited films were
PDF
Album
Full Research Paper
Published 14 Oct 2024

Dual-functionalized architecture enables stable and tumor cell-specific SiO2NPs in complex biological fluids

  • Iris Renata Sousa Ribeiro,
  • Raquel Frenedoso da Silva,
  • Romênia Ramos Domingues,
  • Adriana Franco Paes Leme and
  • Mateus Borba Cardoso

Beilstein J. Nanotechnol. 2024, 15, 1238–1252, doi:10.3762/bjnano.15.100

Graphical Abstract
  • (targeting agent) to provide selective interaction with tumor cell lines in biological media. The stability of these dually functionalized SiO2NPs is preserved in unprocessed human plasma while yielding a decrease in the number of adsorbed proteins. Experiments in murine blood further proved that these
  • improved colloidal stability [25][26]. Remarkably, functionalized NPs were stable in a complex medium (cell culture medium and human plasma) and showed greater potential for recognition by tumor cells. Material and Methods Materials Tetraethyl orthosilicate (TEOS, 98%), (3-aminopropyl)triethoxysilane
  • 1.0 mg·mL–1) and later used for the quantification of captured SiO2NPs-ZW-FO. The calculations were performed using the value obtained at the maximum of the emission band. Stability of SiO2NPs in cell culture medium and human plasma Dynamic light scattering (DLS) measurements were performed to
PDF
Album
Supp Info
Full Research Paper
Published 07 Oct 2024

Realizing active targeting in cancer nanomedicine with ultrasmall nanoparticles

  • André F. Lima,
  • Giselle Z. Justo and
  • Alioscka A. Sousa

Beilstein J. Nanotechnol. 2024, 15, 1208–1226, doi:10.3762/bjnano.15.98

Graphical Abstract
  • surface coating with bulkier molecules, such as long-chain PEG or various polymers. The strategic coating of usNPs with small molecules therefore preserves the overall ultrasmall size of the particles even within complex biofluids, such as human plasma. AuNCs coated with GSH exemplify this concept
  • avidity effects. On the other hand, too many ligands could alter the original surface characteristics of usNPs, leading to stronger nonspecific interactions with plasma proteins. Targeted usNPs with weak binding to cancer cell surface receptors may not provide any additional value over non-targeted
  • therapeutic target for MM [161]. Based on this, the Gd construct was utilized for the detection of malignant plasma cells in MM using magnetic resonance imaging (MRI). Competitive cell-binding assays confirmed the maintenance of antibody specificity after conjugation to usNPs. The resulting targeted usNPs
PDF
Album
Review
Published 30 Sep 2024

A low-kiloelectronvolt focused ion beam strategy for processing low-thermal-conductance materials with nanoampere currents

  • Annalena Wolff,
  • Nico Klingner,
  • William Thompson,
  • Yinghong Zhou,
  • Jinying Lin and
  • Yin Xiao

Beilstein J. Nanotechnol. 2024, 15, 1197–1207, doi:10.3762/bjnano.15.97

Graphical Abstract
  • for any type of instrument and ion species, which includes gallium FIBs, plasma FIBs, helium ion microscopy FIBs, as well as low-temperature ion source and magneto-optical trap ion source FIBs. Results and Discussion SRIM simulations SRIM simulations were carried out to evaluate the interactions of 5
PDF
Album
Full Research Paper
Published 27 Sep 2024

Synthesis, characterization and anticancer effect of doxorubicin-loaded dual stimuli-responsive smart nanopolymers

  • Ömür Acet,
  • Pavel Kirsanov,
  • Burcu Önal Acet,
  • Inessa Halets-Bui,
  • Dzmitry Shcharbin,
  • Şeyda Ceylan Cömert and
  • Mehmet Odabaşı

Beilstein J. Nanotechnol. 2024, 15, 1189–1196, doi:10.3762/bjnano.15.96

Graphical Abstract
  • our case we observed a release reaching a plateau after 12 h (Figure 4B). Also, it was found that in cancer cells in mice, ammonium/ammonia levels in tumor lesions are in the millimolar range, higher than in the blood plasma. Using tumor cells in culture, the authors showed that Doxil in the presence
PDF
Album
Full Research Paper
Published 26 Sep 2024

Recent updates in applications of nanomedicine for the treatment of hepatic fibrosis

  • Damai Ria Setyawati,
  • Fransiska Christydira Sekaringtyas,
  • Riyona Desvy Pratiwi,
  • A’liyatur Rosyidah,
  • Rohimmahtunnissa Azhar,
  • Nunik Gustini,
  • Gita Syahputra,
  • Idah Rosidah,
  • Etik Mardliyati,
  • Tarwadi and
  • Sjaikhurrizal El Muttaqien

Beilstein J. Nanotechnol. 2024, 15, 1105–1116, doi:10.3762/bjnano.15.89

Graphical Abstract
  • activated HSCs in liver fibrosis resulted in a loss of the fenestrae, hindering plasma to reach the perisinusoidal space [43]. As the disease progresses, the reduced blood flow and the blockage of portal flow through the liver could diminish the efficiency of drug delivery. Nanoencapsulation as passive
  • plant-derived compounds, curcumin is an ideal representative of phytocompounds with antifibrosis activity. Despite a large volume of published reports on curcumin, curcumin’s major constraints in clinical trials include short biological half-life in plasma and low bioavailability. To solve these
  • the elevation of plasma enzyme activity of aspartate transaminase (ALT) and alanine transaminase (AST), the orally administered curcumin loaded PLA-PEG NPs successfully improved the in vivo structure of the liver and reduced microvesicular steatosis, congestion of erythrocytes, and the infiltration of
PDF
Album
Review
Published 23 Aug 2024

Unveiling the potential of alginate-based nanomaterials in sensing technology and smart delivery applications

  • Shakhzodjon Uzokboev,
  • Khojimukhammad Akhmadbekov,
  • Ra’no Nuritdinova,
  • Salah M. Tawfik and
  • Yong-Ill Lee

Beilstein J. Nanotechnol. 2024, 15, 1077–1104, doi:10.3762/bjnano.15.88

Graphical Abstract
  • in plasma, which makes them incapable of continuous release [20]. In addition, to achieve optimal efficacy and safety, the drug must be administered at a precisely controlled rate and a special target site [21]. To solve these issues in DDSs, biopolymers can be a perfect solution. Because they have
  • organs [46]. Another drawback is that current drug delivery technologies yield only limited bioavailability and change drug levels in plasma, making them incapable of long-term release. Without proper dispensing techniques, the entire treatment process may fail. In addition, the drug must be delivered at
PDF
Album
Review
Published 22 Aug 2024

Effect of wavelength and liquid on formation of Ag, Au, Ag/Au nanoparticles via picosecond laser ablation and SERS-based detection of DMMP

  • Sree Satya Bharati Moram,
  • Chandu Byram and
  • Venugopal Rao Soma

Beilstein J. Nanotechnol. 2024, 15, 1054–1069, doi:10.3762/bjnano.15.86

Graphical Abstract
  • size and composition, making it a preferred choice for nanomaterials synthesis [2][3][4][5]. The process involves laser plasma interacting with a metal in a liquid; it excites electrons, which then generates atomic vibrations within a few picoseconds, causing rapid heating, melting, and explosive
PDF
Album
Supp Info
Full Research Paper
Published 19 Aug 2024

Interface properties of nanostructured carbon-coated biological implants: an overview

  • Mattia Bartoli,
  • Francesca Cardano,
  • Erik Piatti,
  • Stefania Lettieri,
  • Andrea Fin and
  • Alberto Tagliaferro

Beilstein J. Nanotechnol. 2024, 15, 1041–1053, doi:10.3762/bjnano.15.85

Graphical Abstract
  • , and they are classified according to the power sources used for the process (i.e., plasma-, direct current-, radiofrequency-, and ion beam-assisted coatings) [85]. All PVD processes are based on a vacuum chamber containing the material to be deposited, known as target, and the chosen substrate onto
  • due to mere surface interactions, as summarized in Figure 3. The interaction between implants and the immune system is highly tissue-specific, with different responses observed depending on the implantation sites. Usually, the insertion of an implant is followed by the adsorption of plasma components
  • % compared with the untreated surface. The authors suggested that the improved performance was due to the changes adsorption rate of protein and plasma compounds. Mallik et al. [154] used electrophoretically deposited graphene for coating titanium, achieving a strong reduction in corrosion with a coating
PDF
Album
Review
Published 16 Aug 2024

Entry of nanoparticles into cells and tissues: status and challenges

  • Kirsten Sandvig,
  • Tore Geir Iversen and
  • Tore Skotland

Beilstein J. Nanotechnol. 2024, 15, 1017–1029, doi:10.3762/bjnano.15.83

Graphical Abstract
  • types of molecules. It is now common to include vesicles originating from cells as being NPs. During the last decade there has been an amazing increase in studies of exosomes, small vesicles secreted by fusion of multivesicular bodies (late endosomes) with the plasma membrane of cells. Also, release of
  • other types of vesicles, for instance from the plasma membrane, may play a role in the transfer of information between cells. For a list of various types of extracellular vesicles (EVs), see [5]. For therapeutic purposes, EVs may not only be loaded with drugs after the release from cells, but incubation
  • phagocytes [7][8][9][10]). Endophilin is a player when it comes to both clathrin-mediated endocytosis (CME) and FEME, which is an endocytic mechanism induced by growth factors [7][8]. It should be noted that FEME is dependent on the formation of endophilin-positive assemblies on the plasma membrane, and this
PDF
Album
Perspective
Published 12 Aug 2024

Recent progress on field-effect transistor-based biosensors: device perspective

  • Billel Smaani,
  • Fares Nafa,
  • Mohamed Salah Benlatrech,
  • Ismahan Mahdi,
  • Hamza Akroum,
  • Mohamed walid Azizi,
  • Khaled Harrar and
  • Sayan Kanungo

Beilstein J. Nanotechnol. 2024, 15, 977–994, doi:10.3762/bjnano.15.80

Graphical Abstract
  • , forming a plasma layer of holes. An abrupt junction at the channel/source was created to facilitate the entry of biomolecules into the cavity. Thus, significant variations in electrostatic properties were observed due to the distinct characteristics of the biomolecules, leading to improved sensitivity
  • FET-based biosensors. A Schottky barrier (SE SB) FET-based biosensor, engineered with a charge plasma source, has been proposed and simulated by Hafiz et al. [93], targeting biosensing applications. Figure 10 shows the innovative structure of SE SB FET-based biosensor which utilizes a hafnium material
  • biosensor and after the immobilization of biomolecules in the cavity. 2.2.5 Charge plasma four-gated MOSFET-based biosensors. Chanda et al. [97] designed a charge plasma four-gated (CP FG) MOSFET-based biosensor structure to enhance the detection of various types of biomolecules. The concept of charge
PDF
Album
Review
Published 06 Aug 2024

Beyond biomimicry – next generation applications of bioinspired adhesives from microfluidics to composites

  • Dan Sameoto

Beilstein J. Nanotechnol. 2024, 15, 965–976, doi:10.3762/bjnano.15.79

Graphical Abstract
  • was initially applied as an adhesion mechanism for microfluidics, a distinct project I was working on in 2012, that required a reversible adhesion system offering high strength, low contamination, no damage to mating surfaces, and no need for separate glues, plasma treatments, or magnets. A simple
PDF
Album
Supp Info
Perspective
Published 05 Aug 2024

Effects of cutting tool geometry on material removal of a gradient nanograined CoCrNi medium entropy alloy

  • Yu-Sheng Lu,
  • Yu-Xuan Hung,
  • Thi-Xuyen Bui and
  • Te-Hua Fang

Beilstein J. Nanotechnol. 2024, 15, 925–940, doi:10.3762/bjnano.15.76

Graphical Abstract
  • through grain refinement can increase the strength further without adjusting the composition. Wei et al. used a mechanical surface abrasion treatment to prepare a CoCrNi MEA with a grain-size-gradient structure with excellent strain hardening potential compared with spark plasma sintering fine-grained
PDF
Album
Full Research Paper
Published 23 Jul 2024

Water-assisted purification during electron beam-induced deposition of platinum and gold

  • Cristiano Glessi,
  • Fabian A. Polman and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2024, 15, 884–896, doi:10.3762/bjnano.15.73

Graphical Abstract
  • [26][27], and ammonia [28][29], as a mixture of argon and oxygen [30][31], or in an oxygen plasma [32][33]. The success of these purification attempts varies considerably depending on the chemical nature of the precursor and the reactant gas. When using an oxidant gas reactant, such as water or oxygen
  • after loading the sample, the chamber was plasma-cleaned with an XEI Scientific Evactron decontaminator for 30 min, at 0.4 Torr (air leak) and a forward radio frequency power of 12 W. Silicon substrates were obtained from a 525 ± 25 µm p-type silicon wafer (resistivity of 1–5 Ω·cm, (100) crystal
PDF
Album
Supp Info
Full Research Paper
Published 18 Jul 2024

Synthesis of silver–palladium Janus nanoparticles using co-sputtering of independent sources: experimental and theorical study

  • Maria J. Martínez-Carreón,
  • Francisco Solís-Pomar,
  • Abel Fundora,
  • Claudio D. Gutiérrez-Lazos,
  • Sergio Mejía-Rosales,
  • Hector N. Fernández-Escamilla,
  • Jonathan Guerrero-Sánchez,
  • Manuel F. Meléndrez and
  • Eduardo Pérez-Tijerina

Beilstein J. Nanotechnol. 2024, 15, 808–816, doi:10.3762/bjnano.15.67

Graphical Abstract
  • with reference code 00-004-0783, whereas the interplanar distance of 0.230 nm, according to crystallographic chart 01-072-5157, corresponds to the (111) plane of a cubic system of an AgPd compound. Forming the plasma in different chambers favors this type of growth. An elemental analysis (EDS) of the
PDF
Album
Full Research Paper
Published 04 Jul 2024

Laser synthesis of nanoparticles in organic solvents – products, reactions, and perspectives

  • Theo Fromme,
  • Sven Reichenberger,
  • Katharine M. Tibbetts and
  • Stephan Barcikowski

Beilstein J. Nanotechnol. 2024, 15, 638–663, doi:10.3762/bjnano.15.54

Graphical Abstract
  • synthesis of HCN [79]. The oxidation and phase change of the target surface during LAL was initially published by Ogale et al. [80] in 1987, and nanoparticle oxidation has been addressed in the literature frequently afterwards [53][54][68][69][70]. During the plasma and cavitation bubble phase, reactive
  • oxygen species (ROS), for example, hydrogen peroxide, hydroxyl radicals, or dissolved oxygen, react with the particles leading to their surface oxidation. During irradiation of water with intense laser pulses, a weakly ionized plasma forms because of optical breakdown, supercontinuum emission, or both
  • . Optical breakdown occurs when the free-electron density surpasses a critical value, resulting in a high-density plasma, and the optical breakdown threshold is significantly reduced in the presence of metal nanoparticles [49][81][82]. Supercontinuum emission can occur at low fluences, when pulses shorter
PDF
Album
Review
Published 05 Jun 2024

Exfoliation of titanium nitride using a non-thermal plasma process

  • Priscila Jussiane Zambiazi,
  • Dolores Ribeiro Ricci Lazar,
  • Larissa Otubo,
  • Rodrigo Fernando Brambilla de Souza,
  • Almir Oliveira Neto and
  • Cecilia Chaves Guedes-Silva

Beilstein J. Nanotechnol. 2024, 15, 631–637, doi:10.3762/bjnano.15.53

Graphical Abstract
  • , Brazil 10.3762/bjnano.15.53 Abstract In this study, we present a novel approach for the exfoliation of titanium nitride (TiN) powders utilizing a rapid, facile, and environmentally friendly non-thermal plasma method. This method involves the use of an electric arc and nitrogen as the ambient gas at room
  • successful exfoliation of TiN structures using our innovative non-thermal plasma method, opening up exciting possibilities for advanced material applications. Keywords: exfoliation; nanosheets; non-plasma method; titanium nitride; Introduction Since the groundbreaking discovery of graphene by Andre Geim
  • exfoliation methods, offering promising prospects for applications in photoacoustic imaging and photothermal therapy of tumors because of their satisfactory absorption characteristics in the second near-infrared (NIR-II) region [5]. The non-thermal plasma (NTP) synthesis method enables the fabrication of 2D
PDF
Album
Letter
Published 31 May 2024

AFM-IR investigation of thin PECVD SiOx films on a polypropylene substrate in the surface-sensitive mode

  • Hendrik Müller,
  • Hartmut Stadler,
  • Teresa de los Arcos,
  • Adrian Keller and
  • Guido Grundmeier

Beilstein J. Nanotechnol. 2024, 15, 603–611, doi:10.3762/bjnano.15.51

Graphical Abstract
  • /bjnano.15.51 Abstract Thin silicon oxide films deposited on a polypropylene substrate by plasma-enhanced chemical vapor deposition were investigated using atomic force microscopy-based infrared (AFM-IR) nanospectroscopy in contact and surface-sensitive mode. The focus of this work is the comparison of
  • ]. In this study thin coatings of SiOx were deposited by plasma-enhanced chemical vapor deposition (PECVD) in an oxygen-rich plasma process with hexamethyldisiloxane (HMDSO) used as monomer. With this process, the thickness of the coating can be controlled and homogeneous films can be produced [15
  • between 0.2 and 0.5 mbar. As the gas mixture, argon, oxygen, and HMDSO (98.5% purity, Sigma-Aldrich) were used in different ratios. First, the surface was pretreated for five seconds with an oxygen-rich plasma. For this step, the argon-to-oxygen ratio was set to 1:2. For the deposition of silicon oxide
PDF
Album
Correction
Full Research Paper
Published 24 May 2024
Other Beilstein-Institut Open Science Activities