Search results

Search for "poly(methyl methacrylate) (PMMA)" in Full Text gives 72 result(s) in Beilstein Journal of Nanotechnology.

P3HT:PCBM blend films phase diagram on the base of variable-temperature spectroscopic ellipsometry

  • Barbara Hajduk,
  • Henryk Bednarski,
  • Bożena Jarząbek,
  • Henryk Janeczek and
  • Paweł Nitschke

Beilstein J. Nanotechnol. 2018, 9, 1108–1115, doi:10.3762/bjnano.9.102

Graphical Abstract
  • coefficient, which can be detected as change in the slope of d(T) plots [26]. Variable-temperature spectroscopic ellipsometry has been applied to study thin films of polymers such as polystyrene (PS) [27][28][29][30][31], poly(α-methylstyrene) [32], poly(methyl methacrylate) (PMMA) [33][34] and polyester [35
PDF
Album
Full Research Paper
Published 05 Apr 2018

Al2O3/TiO2 inverse opals from electrosprayed self-assembled templates

  • Arnau Coll,
  • Sandra Bermejo,
  • David Hernández and
  • Luís Castañer

Beilstein J. Nanotechnol. 2018, 9, 216–223, doi:10.3762/bjnano.9.23

Graphical Abstract
  • of recent literature shows that opals made of polystyrene or poly(methyl methacrylate) (PMMA) [15][16][17][18][19][20][21][22][23][24] nanoparticles can be orderly assembled in larger areas and thicknesses, however, such materials do not achieve the same optical performance as inverse opals, due to
PDF
Album
Full Research Paper
Published 19 Jan 2018

Increasing the stability of DNA nanostructure templates by atomic layer deposition of Al2O3 and its application in imprinting lithography

  • Hyojeong Kim,
  • Kristin Arbutina,
  • Anqin Xu and
  • Haitao Liu

Beilstein J. Nanotechnol. 2017, 8, 2363–2375, doi:10.3762/bjnano.8.236

Graphical Abstract
  • ]. A wide range of DNA nanostructures, including DNA nanotubes, 1D λ-DNA, 2D DNA brick crystals with 3D features, hexagonal DNA 2D arrays, and DNA origami triangles, were tested for the pattern replication process to poly(methyl methacrylate) (PMMA), poly(L-lactic acid) (PLLA), and photo-cross-linked
PDF
Album
Supp Info
Full Research Paper
Published 09 Nov 2017

Fabrication of gold-coated PDMS surfaces with arrayed triangular micro/nanopyramids for use as SERS substrates

  • Jingran Zhang,
  • Yongda Yan,
  • Peng Miao and
  • Jianxiong Cai

Beilstein J. Nanotechnol. 2017, 8, 2271–2282, doi:10.3762/bjnano.8.227

Graphical Abstract
  • nanoparticles on a poly(methyl methacrylate) (PMMA) template, and malachite green on fish skin [27] was successfully detected. A flexible and transparent substrate consisting of silver nanoparticles on polyethylene terephthalate (PET) sheets was fabricated for in situ detection of R6G and thiram residues with a
PDF
Album
Full Research Paper
Published 01 Nov 2017

A systematic study of the controlled generation of crystalline iron oxide nanoparticles on graphene using a chemical etching process

  • Peter Krauß,
  • Jörg Engstler and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2017, 8, 2017–2025, doi:10.3762/bjnano.8.202

Graphical Abstract
  • additional polymer coating is often deposited on the monolayer prior to the etching process to provide mechanical support for the graphene, preventing it from tearing and ripping [14][22][23][24][29][30][31]. Most common are thin layers of poly(methyl methacrylate) (PMMA) which can be easily deposited by
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2017

Identifying the nature of surface chemical modification for directed self-assembly of block copolymers

  • Laura Evangelio,
  • Federico Gramazio,
  • Matteo Lorenzoni,
  • Michaela Gorgoi,
  • Francisco Miguel Espinosa,
  • Ricardo García,
  • Francesc Pérez-Murano and
  • Jordi Fraxedas

Beilstein J. Nanotechnol. 2017, 8, 1972–1981, doi:10.3762/bjnano.8.198

Graphical Abstract
  • silicon wafer, left in the Figure) and the block copolymer domains. The first DSA (two steps) process uses electron beam lithography (EBL) [12] on a poly(methyl methacrylate) (PMMA) resist with a subsequent substrate functionalization with oxygen plasma of the uncovered areas (top of Figure 1). The two
PDF
Album
Supp Info
Full Research Paper
Published 21 Sep 2017

Fabrication of carbon nanospheres by the pyrolysis of polyacrylonitrile–poly(methyl methacrylate) core–shell composite nanoparticles

  • Dafu Wei,
  • Youwei Zhang and
  • Jinping Fu

Beilstein J. Nanotechnol. 2017, 8, 1897–1908, doi:10.3762/bjnano.8.190

Graphical Abstract
  • nanoparticles. Furthermore, an extra acid-washing process was needed to remove the inorganic salt layer [33][36]. As the cyclization reactions between nitriles mainly occur during the preoxidization and low-temperature carbonization steps (<450 °C), we tried to coat with a protective poly(methyl methacrylate
  • ) (PMMA) layer, which would remain stable during the preoxidation and the low-temperature carbonization. This layer, however, will completely degrade after the high-temperature carbonization on the surface of the PAN nanoparticle to inhibit the inter-particular adhesion between carbon nanospheres; thus
PDF
Album
Supp Info
Full Research Paper
Published 11 Sep 2017

Parylene C as a versatile dielectric material for organic field-effect transistors

  • Tomasz Marszalek,
  • Maciej Gazicki-Lipman and
  • Jacek Ulanski

Beilstein J. Nanotechnol. 2017, 8, 1532–1545, doi:10.3762/bjnano.8.155

Graphical Abstract
  • energy exhibited a mobility of μ = 0.006 cm2/V·s. More detailed studies were carried out for tetracene semiconductor films deposited on various dielectric materials, namely organic polystyrene (PS), Parylene C, and poly(methyl methacrylate) (PMMA) as well as on inorganic SiO2, with and without HMDS
PDF
Album
Review
Published 28 Jul 2017

Micro- and nano-surface structures based on vapor-deposited polymers

  • Hsien-Yeh Chen

Beilstein J. Nanotechnol. 2017, 8, 1366–1374, doi:10.3762/bjnano.8.138

Graphical Abstract
  • ) surface and a poly(4-ethynyl-p-xylylene-co-p-xylylene) surface, respectively. Various substrates were successfully verified for the coating and patterning modifications: metal (silver, titanium, stainless steel), polystyrene (PS), poly(methyl methacrylate) (PMMA), silicon, glass, poly(dimethylsiloxane
PDF
Album
Review
Published 04 Jul 2017

The integration of graphene into microelectronic devices

  • Guenther Ruhl,
  • Sebastian Wittmann,
  • Matthias Koenig and
  • Daniel Neumaier

Beilstein J. Nanotechnol. 2017, 8, 1056–1064, doi:10.3762/bjnano.8.107

Graphical Abstract
  • the ex situ transfer by reinforcing the graphene layer with a polymer film, e.g., poly(methyl methacrylate) (PMMA), and etching off the Cu growth substrate. There are several options for subsequent graphene deposition onto the final substrates discussed in [19] (Figure 1). Focusing on wafer-level
PDF
Album
Review
Published 15 May 2017

Bio-inspired micro-to-nanoporous polymers with tunable stiffness

  • Julia Syurik,
  • Ruth Schwaiger,
  • Prerna Sudera,
  • Stephan Weyand,
  • Siegbert Johnsen,
  • Gabriele Wiegand and
  • Hendrik Hölscher

Beilstein J. Nanotechnol. 2017, 8, 906–914, doi:10.3762/bjnano.8.92

Graphical Abstract
  • demonstrate that a foam of a stiff polymer such as poly(methyl methacrylate) (PMMA) can exhibit a gradually changing effective elastic modulus when the local morphology of the sample undergoes a transition from microcellular to nanocellular. Porous PMMA films with a controlled gradient of the pore size were
  • fabricated and investigated by dynamic flat-punch nanoindentation in order to obtain insight into the influence of the graded pore structure on the local viscoelastic properties. Experimental Materials and foaming process Porous poly(methyl methacrylate) (PMMA) films were produced from PMMA (Topacryl AG
PDF
Album
Supp Info
Full Research Paper
Published 21 Apr 2017

Graphene functionalised by laser-ablated V2O5 for a highly sensitive NH3 sensor

  • Margus Kodu,
  • Artjom Berholts,
  • Tauno Kahro,
  • Mati Kook,
  • Peeter Ritslaid,
  • Helina Seemen,
  • Tea Avarmaa,
  • Harry Alles and
  • Raivo Jaaniso

Beilstein J. Nanotechnol. 2017, 8, 571–578, doi:10.3762/bjnano.8.61

Graphical Abstract
  • allowed to cool slowly, 15 °C/min in Ar flow. The as-grown graphene film was transferred onto a Si/SiO2 substrate by using poly(methyl methacrylate) (PMMA; MW ≈997,000 Da, GPC, Alfa Aesar) as a supporting material. The PMMA solution (1% in chlorobenzene) was spin-coated onto graphene/Cu, dried, and the Cu
PDF
Album
Full Research Paper
Published 07 Mar 2017

In-situ monitoring by Raman spectroscopy of the thermal doping of graphene and MoS2 in O2-controlled atmosphere

  • Aurora Piazza,
  • Filippo Giannazzo,
  • Gianpiero Buscarino,
  • Gabriele Fisichella,
  • Antonino La Magna,
  • Fabrizio Roccaforte,
  • Marco Cannas,
  • Franco Mario Gelardi and
  • Simonpietro Agnello

Beilstein J. Nanotechnol. 2017, 8, 418–424, doi:10.3762/bjnano.8.44

Graphical Abstract
  • ] and chemical vapor deposition (CVD) on catalytic metals [9][10] followed by the poly(methyl methacrylate) (PMMA) assisted transfer [11][12], enlarged the interest and perspectives for applications. In particular in view of the realization of electronic devices and to obtain Gr-based field effect
PDF
Album
Full Research Paper
Published 10 Feb 2017

Methods for preparing polymer-decorated single exchange-biased magnetic nanoparticles for application in flexible polymer-based films

  • Laurence Ourry,
  • Delphine Toulemon,
  • Souad Ammar and
  • Fayna Mammeri

Beilstein J. Nanotechnol. 2017, 8, 408–417, doi:10.3762/bjnano.8.43

Graphical Abstract
  • for technological applications is of primary importance. Results: In this work, well-characterized exchange-biased perfectly epitaxial CoxFe3−xO4@CoO core@shell NPs, which were isotropic in shape and of about 10 nm in diameter, were decorated by two different polymers, poly(methyl methacrylate) (PMMA
  • and aggregation as far as possible in the first stage of polymer grafting, mechanical stirring and dilute suspensions of reactants were used, even if the functionalization of large amounts of particles becomes difficult. We specifically graft poly(methyl methacrylate) (PMMA) and polystyrene (PS
  • progress to fully appreciate the dipolar interaction effect on the exchange bias and the influence of NP assembly on the exchange field. Conclusion We described the functionalization of 10 nm exchange-biased CoxFe3−xO4@CoO core@shell NPs by two different polymers, poly(methyl methacrylate) (PMMA) and
PDF
Album
Full Research Paper
Published 09 Feb 2017

Flexible photonic crystal membranes with nanoparticle high refractive index layers

  • Torben Karrock,
  • Moritz Paulsen and
  • Martina Gerken

Beilstein J. Nanotechnol. 2017, 8, 203–209, doi:10.3762/bjnano.8.22

Graphical Abstract
  • -linked polymer with reduced surface hydrophobicity. The mixture is thoroughly stirred for 5 min at 500 rpm (IKA ULTRA-TURRAX Tube Drive). The mixture is degassed in vacuum for 30 min. The mixed PDMS is poured into a poly(methyl methacrylate) (PMMA) mold which defines the form and size for the photonic
PDF
Album
Full Research Paper
Published 20 Jan 2017

Graphene–polymer coating for the realization of strain sensors

  • Carmela Bonavolontà,
  • Carla Aramo,
  • Massimo Valentino,
  • Giampiero Pepe,
  • Sergio De Nicola,
  • Gianfranco Carotenuto,
  • Angela Longo,
  • Mariano Palomba,
  • Simone Boccardi and
  • Carosena Meola

Beilstein J. Nanotechnol. 2017, 8, 21–27, doi:10.3762/bjnano.8.3

Graphical Abstract
  • poly(methyl methacrylate) (PMMA). The good adhesion to the PMMA surface, combined with the shear stress, allows a uniform and continuous spreading of the graphite nanocrystals, resulting in a very uniform graphene multilayer coating on the substrate surface. The fabrication process is simple and yields
  • polymer were also recently reported [3]. In this work we describe a simple and direct fabrication process based on a new micrographite colloidal suspension to produce thin coatings with large electrical piezoresitivity. When applied to a slat of poly(methyl methacrylate) (PMMA), the adhesion to the PMMA
PDF
Album
Full Research Paper
Published 03 Jan 2017

Numerical investigation of depth profiling capabilities of helium and neon ions in ion microscopy

  • Patrick Philipp,
  • Lukasz Rzeznik and
  • Tom Wirtz

Beilstein J. Nanotechnol. 2016, 7, 1749–1760, doi:10.3762/bjnano.7.168

Graphical Abstract
  • conductivity of polymers [1]. A reduction of the band gap along with increasing photo- and electrical conductivity is observed for C+ implantation into poly(methyl methacrylate) (PMMA), which is related to the formation of carbon clusters with a polyaromatic structure [2]. Potential applications include
  • polytetrafluoroethylene (PTFE), polystyrene (PS) or poly(methyl methacrylate) (PMMA). For samples 1 to 3, layers 1 and 5 have a thickness of 20 nm while the remaining layers have a thickness of 10 nm. For samples 4 and 6, layers 1, 3 and 6 are 20 nm thick, layers 2 and 4 are 10 nm thick and layer 5 is 40 nm thick. The
PDF
Album
Full Research Paper
Published 17 Nov 2016

Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers

  • Rasheed Atif and
  • Fawad Inam

Beilstein J. Nanotechnol. 2016, 7, 1174–1196, doi:10.3762/bjnano.7.109

Graphical Abstract
  • in a poly(methyl methacrylate) (PMMA) matrix [136]. They observed an increase in yield strength and draw ratio of the composite fiber. The yield strength was doubled and the draw ratio was increased from 40 to 300 in 5 wt % SWNT–PMMA system [35]. Kumar et al. also used fiber spinning to align SWNTs
PDF
Album
Full Research Paper
Published 12 Aug 2016

Manufacturing and investigation of physical properties of polyacrylonitrile nanofibre composites with SiO2, TiO2 and Bi2O3 nanoparticles

  • Tomasz Tański,
  • Wiktor Matysiak and
  • Barbara Hajduk

Beilstein J. Nanotechnol. 2016, 7, 1141–1155, doi:10.3762/bjnano.7.106

Graphical Abstract
  • prior modification of the particle surface) significantly improves the mechanical properties and thermal strength of the resulting composite relative to the pure polymer. In addition, polymer composites (based on, inter alia, poly(ether ether ketone) (PEEK), poly(methyl methacrylate) (PMMA), poly(lactic
PDF
Album
Full Research Paper
Published 05 Aug 2016

Experimental and simulation-based investigation of He, Ne and Ar irradiation of polymers for ion microscopy

  • Lukasz Rzeznik,
  • Yves Fleming,
  • Tom Wirtz and
  • Patrick Philipp

Beilstein J. Nanotechnol. 2016, 7, 1113–1128, doi:10.3762/bjnano.7.104

Graphical Abstract
  • composition can be found. Methods Experimental setup For this study, different polymer samples were spin-coated on silicon (111). The homopolymers of polystyrene (PS) with molecular mass Mw = 1 900 (Mw/Mn = 1.10) and poly(methyl methacrylate) (PMMA) with molecular mass Mn = 22 200 (Mw/Mn = 1.07) were obtained
  • evolution of the He, Ne and Ar positions in the system at atomic level. Four different polymers have been selected: polyethylene (PE), polytetrafluoroethylene (PTFE), atactic polystyrene (PS) and poly(methyl methacrylate) (PMMA). Different polymer samples have been created, each sample containing 10
PDF
Album
Full Research Paper
Published 02 Aug 2016

Direct formation of gold nanorods on surfaces using polymer-immobilised gold seeds

  • Majid K. Abyaneh,
  • Pietro Parisse and
  • Loredana Casalis

Beilstein J. Nanotechnol. 2016, 7, 809–816, doi:10.3762/bjnano.7.72

Graphical Abstract
  • techniques such as AFM and SEM have been used to support concept of the proposed growth method. Keywords: atomic force microscopy (AFM); direct surface growth; gold nanorods; nanocomposites; poly(methyl methacrylate) (PMMA); Introduction Gold nanorods (GNRs) are among the most interesting noble metal one
PDF
Album
Full Research Paper
Published 06 Jun 2016

Linear and nonlinear optical properties of hybrid metallic–dielectric plasmonic nanoantennas

  • Mario Hentschel,
  • Bernd Metzger,
  • Bastian Knabe,
  • Karsten Buse and
  • Harald Giessen

Beilstein J. Nanotechnol. 2016, 7, 111–120, doi:10.3762/bjnano.7.13

Graphical Abstract
  • lithography in poly(methyl methacrylate) (PMMA) resist on a fused silica substrate (suprasil, Heraeus), followed by evaporation of a chromium adhesion and a gold layer, and a subsequent lift-off procedure. The sample is again coated afterward with PMMA. Using the alignment marks, openings are created in the
PDF
Album
Full Research Paper
Published 26 Jan 2016

Fabrication and characterization of novel multilayered structures by stereocomplexion of poly(D-lactic acid)/poly(L-lactic acid) and self-assembly of polyelectrolytes

  • Elena Dellacasa,
  • Li Zhao,
  • Gesheng Yang,
  • Laura Pastorino and
  • Gleb B. Sukhorukov

Beilstein J. Nanotechnol. 2016, 7, 81–90, doi:10.3762/bjnano.7.10

Graphical Abstract
  • well as other biocompatible polymers such as poly(methyl methacrylate) (PMMA) [39][40][41], poly(lactic-co-glycolic acid) (PLGA) [42] and poly-ε-caprolactone (PCL) [43][44], is extremely interesting for the fabrication of innovative multilayer structures to be used in drug delivery applications. In
PDF
Album
Full Research Paper
Published 21 Jan 2016

Nanoscale rippling on polymer surfaces induced by AFM manipulation

  • Mario D’Acunto,
  • Franco Dinelli and
  • Pasqualantonio Pingue

Beilstein J. Nanotechnol. 2015, 6, 2278–2289, doi:10.3762/bjnano.6.234

Graphical Abstract
  • wide spectrum of polymers has been investigated including polystyrene (PS) [13][20], poly(methyl methacrylate) (PMMA) [25], poly(ethylene terephthalate) (PET) [23], poly(vinyl acetate) (PVAc) [26] and poly(ε-caprolactone) (PCL) [23]. Recently, we have reviewed wear occurring on polymeric surfaces and
  • one to several hundreds of nanometers can be reproduced on the surface of polycarbonate (PC), poly(methyl methacrylate) (PMMA), and polystyrene (PS) films. Authors have clearly shown that the ripple formation varies with T and polymer type (Figure 8a). The dependence on T has been characterized and
PDF
Album
Review
Published 02 Dec 2015

Mapping bound plasmon propagation on a nanoscale stripe waveguide using quantum dots: influence of spacer layer thickness

  • Chamanei S. Perera,
  • Alison M. Funston,
  • Han-Hao Cheng and
  • Kristy C. Vernon

Beilstein J. Nanotechnol. 2015, 6, 2046–2051, doi:10.3762/bjnano.6.208

Graphical Abstract
  • beneficial in studying light matter interaction in nanoscale devices and all-optical circuitry. Theory COMSOL Multiphysics was used to run simulations on silver stripe waveguides supported on an indium tin oxide (ITO)-coated glass substrate with poly(methyl methacrylate) (PMMA) cladding. The width of the
PDF
Album
Full Research Paper
Published 19 Oct 2015
Other Beilstein-Institut Open Science Activities