Search results

Search for "relative permittivity" in Full Text gives 35 result(s) in Beilstein Journal of Nanotechnology.

Tuning adhesion forces between functionalized gold colloidal nanoparticles and silicon AFM tips: role of ligands and capillary forces

  • Sven Oras,
  • Sergei Vlassov,
  • Marta Berholts,
  • Rünno Lõhmus and
  • Karine Mougin

Beilstein J. Nanotechnol. 2018, 9, 660–670, doi:10.3762/bjnano.9.61

Graphical Abstract
  • is the relative permittivity and r = 0.165 nm [33] is the typical cut-off distance. According to calculations, the average values of vdW force between the molecules are around 13 nN. This value allows validating AFM measurements (Figure 3b). Therefore, vdW forces remain one of the main interactions
PDF
Album
Supp Info
Full Research Paper
Published 20 Feb 2018

The effect of the electrical double layer on hydrodynamic lubrication: a non-monotonic trend with increasing zeta potential

  • Dalei Jing,
  • Yunlu Pan and
  • Xiaoming Wang

Beilstein J. Nanotechnol. 2017, 8, 1515–1522, doi:10.3762/bjnano.8.152

Graphical Abstract
  • = [2n0c2e2/(εε0kBT)]1/2 (n0 is the original bulk ion concentration of the lubricant, c is the chemical valence of free ions in the lubricant, e is the elementary charge, ε is the lubricant’s relative permittivity, and ε0 is vacuum’s absolute dielectric constant) is the reciprocal of the Debye length, z is
PDF
Album
Full Research Paper
Published 25 Jul 2017

Computing the T-matrix of a scattering object with multiple plane wave illuminations

  • Martin Fruhnert,
  • Ivan Fernandez-Corbaton,
  • Vassilios Yannopapas and
  • Carsten Rockstuhl

Beilstein J. Nanotechnol. 2017, 8, 614–626, doi:10.3762/bjnano.8.66

Graphical Abstract
  • are zero. Let us consider a single dielectric sphere with a radius of 100 nm and a relative permittivity of 16 in vacuum. The Mie-coefficients of this sphere for the first two orders are non-negligible at 600 THz. Such a high-permittivity sphere is nowadays at the focus of interest since it sustains a
PDF
Album
Correction
Full Research Paper
Published 14 Mar 2017

Large area scanning probe microscope in ultra-high vacuum demonstrated for electrostatic force measurements on high-voltage devices

  • Urs Gysin,
  • Thilo Glatzel,
  • Thomas Schmölzer,
  • Adolf Schöner,
  • Sergey Reshanov,
  • Holger Bartolf and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2015, 6, 2485–2497, doi:10.3762/bjnano.6.258

Graphical Abstract
  • build in potential (Vb) and the width of the SCR (W): where x corresponds to the distance from the p/n-junction. The total width of such an abrupt SCR is given by: where N is ND or NA depending on whether NA >> ND or vice versa and ε = 9.66 is the relative permittivity of SiC. For the case discussed
PDF
Album
Full Research Paper
Published 28 Dec 2015

Attenuation, dispersion and nonlinearity effects in graphene-based waveguides

  • Almir Wirth Lima Jr.,
  • João Cesar Moura Mota and
  • Antonio Sergio Bezerra Sombra

Beilstein J. Nanotechnol. 2015, 6, 1221–1228, doi:10.3762/bjnano.6.125

Graphical Abstract
  • (t) of the graphene nanoribbon, given as [15][16]: In a graphene nanoribbon embedded in a substrate with relative permittivity εr, the TM modes are dominant. Considering the nonretarded regime (q >> ω/c, where c is the speed of light in air), the equation for the dispersion relation for graphene
PDF
Album
Full Research Paper
Published 28 May 2015

Graphene quantum interference photodetector

  • Mahbub Alam and
  • Paul L. Voss

Beilstein J. Nanotechnol. 2015, 6, 726–735, doi:10.3762/bjnano.6.74

Graphical Abstract
  • volume of V, c is the speed of light, εr is the relative permittivity, μr is the relative permeability and ε is the absolute permittivity. The photon scattering functions, and , are calculated assuming monochromatic light and two energy levels for excitation. Both the acoustic phonon and optical phonon
PDF
Album
Full Research Paper
Published 12 Mar 2015

Kelvin probe force microscopy of nanocrystalline TiO2 photoelectrodes

  • Alex Henning,
  • Gino Günzburger,
  • Res Jöhr,
  • Yossi Rosenwaks,
  • Biljana Bozic-Weber,
  • Catherine E. Housecroft,
  • Edwin C. Constable,
  • Ernst Meyer and
  • Thilo Glatzel

Beilstein J. Nanotechnol. 2013, 4, 418–428, doi:10.3762/bjnano.4.49

Graphical Abstract
  • surface and bulk defect states. TiO2 is regarded as an insulator with a relative permittivity of εr = 36 and consequently acts as a charge storage capacitor between a metallic tip and a highly conductive SnO2:F contact. Upon photoelectric charge injection, the redistribution of charge carriers (by
PDF
Album
Full Research Paper
Published 01 Jul 2013

Influence of diffusion on space-charge-limited current measurements in organic semiconductors

  • Thomas Kirchartz

Beilstein J. Nanotechnol. 2013, 4, 180–188, doi:10.3762/bjnano.4.18

Graphical Abstract
  • Mott–Gurney law [18][19] Here ε0 is the vacuum permittivity and εr is the relative permittivity. The Mott–Gurney law is frequently used to determine the mobility of organic semiconductors used for light emitting diodes and solar cells. However, its derivation uses three assumptions that are often not
  • simulations except for the one with Vbi = 1 V in Figure 2, where the contact barrier at the cathode (x = d) is 0.1 eV and the contact barrier at the anode (x = 0) is 1.1 eV. The relative permittivity used in all simulations is εr = 3.8 and the capture coefficient for the Gaussian defect is 10−10 cm3·s−1 for
PDF
Album
Supp Info
Full Research Paper
Published 11 Mar 2013

Schottky junction/ohmic contact behavior of a nanoporous TiO2 thin film photoanode in contact with redox electrolyte solutions

  • Masao Kaneko,
  • Hirohito Ueno and
  • Junichi Nemoto

Beilstein J. Nanotechnol. 2011, 2, 127–134, doi:10.3762/bjnano.2.15

Graphical Abstract
  • Equation 2, the flat band potential Efb, carrier density N, and the thickness of space charge layer dsc were calculated and are shown in Table 1. For the calculation, since the relative permittivity ε of TiO2 is anisotropic (85.8 and 170), we used both the values in the calculation, and thereafter took
  • photoelectrochemistry, the nanostructured TiO2 also forms a Schottky junction in the redox electrolyte solution generating photocurrents. For a Schottky junction semiconductor, the Mott–Schottky relation (Equation 1) is obtained [4], where Csc is the capacitance of the space charge layer [F·m−2], ε the relative
  • permittivity (ε of TiO2 = 85.8 and 170, anisotropic), ε0 the vacuum permittivity (8.854 × 10−12 F·m−1), q the elementary electric charge (1.602 × 10−19 C), N the carrier density [m−3], E the applied potential [V], Efb the flat band potential [V], kB the Boltzman constant (1.380 × 10−23 J·K−1), and T the
PDF
Album
Full Research Paper
Published 28 Feb 2011

Defects in oxide surfaces studied by atomic force and scanning tunneling microscopy

  • Thomas König,
  • Georg H. Simon,
  • Lars Heinke,
  • Leonid Lichtenstein and
  • Markus Heyde

Beilstein J. Nanotechnol. 2011, 2, 1–14, doi:10.3762/bjnano.2.1

Graphical Abstract
  • relative permittivity or dielectric constant of the medium and z the distance between the charges. The Coulomb force FCoulomb is given by It is well known [12] that for very small amplitudes, the shift of the resonance frequency Δf corresponds to the derivative of the tip-sample forces with respect to z
PDF
Album
Review
Published 03 Jan 2011
Other Beilstein-Institut Open Science Activities