Search results

Search for "silver nanoparticles" in Full Text gives 136 result(s) in Beilstein Journal of Nanotechnology.

Bioselectivity of silk protein-based materials and their bio-inspired applications

  • Hendrik Bargel,
  • Vanessa T. Trossmann,
  • Christoph Sommer and
  • Thomas Scheibel

Beilstein J. Nanotechnol. 2022, 13, 902–921, doi:10.3762/bjnano.13.81

Graphical Abstract
PDF
Album
Review
Published 08 Sep 2022

A nonenzymatic reduced graphene oxide-based nanosensor for parathion

  • Sarani Sen,
  • Anurag Roy,
  • Ambarish Sanyal and
  • Parukuttyamma Sujatha Devi

Beilstein J. Nanotechnol. 2022, 13, 730–744, doi:10.3762/bjnano.13.65

Graphical Abstract
  • nanoribbons doped with silver nanoparticles, rGO doped with ZrO2, and CuO–TiO2 hybrid nanocomposites were proposed to detect methyl parathion [19][20][21][22]. Rajaji et al. (2019) modified glassy carbon electrodes with graphene oxide encapsulated 3D porous chalcopyrite (CuFeS2) nanocomposites to detect
PDF
Album
Supp Info
Full Research Paper
Published 28 Jul 2022

Zinc oxide nanostructures for fluorescence and Raman signal enhancement: a review

  • Ioana Marica,
  • Fran Nekvapil,
  • Maria Ștefan,
  • Cosmin Farcău and
  • Alexandra Falamaș

Beilstein J. Nanotechnol. 2022, 13, 472–490, doi:10.3762/bjnano.13.40

Graphical Abstract
PDF
Album
Review
Published 27 May 2022

Sputtering onto liquids: a critical review

  • Anastasiya Sergievskaya,
  • Adrien Chauvin and
  • Stephanos Konstantinidis

Beilstein J. Nanotechnol. 2022, 13, 10–53, doi:10.3762/bjnano.13.2

Graphical Abstract
PDF
Album
Supp Info
Review
Published 04 Jan 2022

Self-assembly of amino acids toward functional biomaterials

  • Huan Ren,
  • Lifang Wu,
  • Lina Tan,
  • Yanni Bao,
  • Yuchen Ma,
  • Yong Jin and
  • Qianli Zou

Beilstein J. Nanotechnol. 2021, 12, 1140–1150, doi:10.3762/bjnano.12.85

Graphical Abstract
  • , the substrate affinity of metal nanoparticles (1.53 mM) is comparable to that of natural lipase (1.27 mM). Metal ions, especially silver ions (Ag+), have been widely studied regarding antibacterial, antifungal, antiviral, anti-inflammatory, anti-angiogenic, and antitumor activities [63][64]. Silver
  • nanoparticles (Ag NPs) hold great promise due to their broad-spectrum and robust antimicrobial properties [65]. The main mechanism is that Ag nanoparticles diffuse into cells and destroy cell walls [66]. However, Ag NPs are cytotoxic, which limits their application [67]. Song et al. [68] developed a broad
PDF
Album
Review
Published 12 Oct 2021

Assessment of the optical and electrical properties of light-emitting diodes containing carbon-based nanostructures and plasmonic nanoparticles: a review

  • Keshav Nagpal,
  • Erwan Rauwel,
  • Frédérique Ducroquet and
  • Protima Rauwel

Beilstein J. Nanotechnol. 2021, 12, 1078–1092, doi:10.3762/bjnano.12.80

Graphical Abstract
  • OLED has also been reported owing to the SPR of AgNP with an average size of 80 nm [48]. Silver nanoparticles were embedded in a PEDOT:PSS layer within the follwing device configuration: ITO (150 nm)/PEDOT:PSS (60 ± 10 nm)/AgNP/Alq3 (100 nm)/LiF (1 nm)/Al (100 nm). The PL emission intensity at 535 nm
PDF
Album
Review
Published 24 Sep 2021

The role of deep eutectic solvents and carrageenan in synthesizing biocompatible anisotropic metal nanoparticles

  • Nabojit Das,
  • Akash Kumar and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2021, 12, 924–938, doi:10.3762/bjnano.12.69

Graphical Abstract
  • of gold and silver nanoparticles. Surface plasmon resonance is an inherent property of plasmonic metal nanoparticles that is immensely employed as a tool for theranostics and is highly influenced by the size and shape of the nanoparticle [2]. The property of SPR has also been exploited for nanochips
  • of nanotechnology. The use carrageenan in nanomaterial synthesis and application has been tabulated in Table 3 [32][110][111][112][113][114][115]. Carrageenan has been complexed with chitosan in a recent study, forming a composite for wound healing dressing. Silver nanoparticles, widely known for
  • emerged as a promising candidate for industrial applications. Silver nanoparticles synthesized using carrageenan as a reducing and stabilizing agent showed promising results in removing organic dyes such as methylene blue and rhodamine B [111]. Magnetic iron nanoparticles were synthesized using κ-, ι-, or
PDF
Album
Review
Published 18 Aug 2021

Modification of a SERS-active Ag surface to promote adsorption of charged analytes: effect of Cu2+ ions

  • Bahdan V. Ranishenka,
  • Andrei Yu. Panarin,
  • Irina A. Chelnokova,
  • Sergei N. Terekhov,
  • Peter Mojzes and
  • Vadim V. Shmanai

Beilstein J. Nanotechnol. 2021, 12, 902–912, doi:10.3762/bjnano.12.67

Graphical Abstract
  • the electrostatic interaction between analyte molecules and silver nanoparticles (Ag NPs) on the intensity of surface-enhanced Raman scattering (SERS). For this, we fabricated nanostructured plasmonic films by immobilization of Ag NPs on glass plates and functionalized them by a set of differently
  • ; oligonucleotides; porphyrin; silver nanoparticles; substrate modification; surface-enhanced Raman spectroscopy (SERS); Introduction Surface-enhanced Raman scattering (SERS) with its advantages of extreme sensitivity, high selectivity, and non-destructive nature has demonstrated great potential for the quick
PDF
Album
Supp Info
Full Research Paper
Published 16 Aug 2021

Silver nanoparticles nucleated in NaOH-treated halloysite: a potential antimicrobial material

  • Yuri B. Matos,
  • Rodrigo S. Romanus,
  • Mattheus Torquato,
  • Edgar H. de Souza,
  • Rodrigo L. Villanova,
  • Marlene Soares and
  • Emilson R. Viana

Beilstein J. Nanotechnol. 2021, 12, 798–807, doi:10.3762/bjnano.12.63

Graphical Abstract
  • 10.3762/bjnano.12.63 Abstract Despite all recent advances in medical treatments, infectious diseases remain dangerous. This has led to intensive scientific research on materials with antimicrobial properties. Silver nanoparticles (Ag-NPs) are a well-established solution in this area. The present work
  • antimicrobial, and that it is possible to imbue a polymeric matrix with the antimicrobial properties of Ag-NPs. Keywords: antimicrobial activity; DIO coating; halloysite; nanocomposites; silver nanoparticles; Introduction The number of people dying from bacterial infections has been significantly reduced with
  • cellular membrane and to disrupt internal cellular components, such as DNA [2][3][4][5][6]. Silver nanoparticles (Ag-NPs), in particular, are known for their antimicrobial properties and are one of the most extensively studied inorganic antimicrobial agents [7][8][9]. Early studies suggested that Ag-NPs
PDF
Album
Full Research Paper
Published 05 Aug 2021

Silver nanoparticles induce the cardiomyogenic differentiation of bone marrow derived mesenchymal stem cells via telomere length extension

  • Khosro Adibkia,
  • Ali Ehsani,
  • Asma Jodaei,
  • Ezzatollah Fathi,
  • Raheleh Farahzadi and
  • Mohammad Barzegar-Jalali

Beilstein J. Nanotechnol. 2021, 12, 786–797, doi:10.3762/bjnano.12.62

Graphical Abstract
  • possible combination of stem cells and nanotechnology in the treatment of diseases. This study aims to investigate the in vitro effect of silver nanoparticles (Ag-NPs) on the cardiomyogenic differentiation of bone marrow-derived mesenchymal stem cells (BM-MSCs) through detection of cardiac markers. For
  • ; cardiomyogenic differentiation; silver nanoparticles; telomere length; Wnt3/β-catenin signaling pathway; Introduction Cardiac disorders that eventually lead to heart failure cause an increased loss of cardiac cells. There is strong evidence that the progression of heart failure is associated with reduction in
  • attention. Novel nanomaterials are being developed to improve disease treatment processes via biopharmaceutical molecules as well as the surface treatment of biomaterials [8][9]. Among nanoparticles (NPs), silver nanoparticles (Ag-NPs) are successfully commercialized due to their well-known antiseptic
PDF
Album
Full Research Paper
Published 02 Aug 2021

Fate and transformation of silver nanoparticles in different biological conditions

  • Barbara Pem,
  • Marija Ćurlin,
  • Darija Domazet Jurašin,
  • Valerije Vrček,
  • Rinea Barbir,
  • Vedran Micek,
  • Raluca M. Fratila,
  • Jesus M. de la Fuente and
  • Ivana Vinković Vrček

Beilstein J. Nanotechnol. 2021, 12, 665–679, doi:10.3762/bjnano.12.53

Graphical Abstract
  • de Zaragoza, Zaragoza 50009, Spain Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain 10.3762/bjnano.12.53 Abstract The exploitation of silver nanoparticles (AgNPs) in biomedicine represents more than one third of their overall application
  • vivo settings. Keywords: animal tissue; biological media; nanoparticle aggregation; nanoparticle dissolution; nanoparticle reformation; silver nanoparticles; Introduction The global consumption of silver nanoparticles (AgNPs) has been steadily increasing in the last decade and estimated to reach over
  • images of freshly synthesized silver nanoparticles (AgNPs) coated with PLL, AOT, or PVP dispersed in ultrapure water at a concentration of 10 mg Ag/L. Scale bars are 100 nm. TEM images of liver obtained from (a) untreated and (b) treated healthy male Wistar rats. The rats were treated orally with a daily
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2021

High-yield synthesis of silver nanowires for transparent conducting PET films

  • Gul Naz,
  • Hafsa Asghar,
  • Muhammad Ramzan,
  • Muhammad Arshad,
  • Rashid Ahmed,
  • Muhammad Bilal Tahir,
  • Bakhtiar Ul Haq,
  • Nadeem Baig and
  • Junaid Jalil

Beilstein J. Nanotechnol. 2021, 12, 624–632, doi:10.3762/bjnano.12.51

Graphical Abstract
  • performance below that of ITO films. Hence, there is a need to modify this polyol method to produce extra-large and highly ordered silver nanowires to outperform ITO films. It is important to note that the polyol synthesis yields impurities in the form of silver nanoparticles [29]. These nanoparticles formed
  • presence of silver nanoparticles in the solution. The ratio between AgNO3 and PVP used in the reaction greatly affects the synthesis of silver nanowires [32]. In the present reaction, the ratio of PVP to AgNO3 was 4:1. The solution was then cooled to room temperature by the addition of 30 mL DI water. The
  • second peak at 373 nm is attributed to the longitudinal plasmon resonance of AgNWs. It is also noted that no other peak was observed, which shows that the final product was free from contamination of any other nanostructures, such as silver nanoparticles or nanocubes. The SEM results also confirm the
PDF
Album
Full Research Paper
Published 01 Jul 2021

On the stability of microwave-fabricated SERS substrates – chemical and morphological considerations

  • Limin Wang,
  • Aisha Adebola Womiloju,
  • Christiane Höppener,
  • Ulrich S. Schubert and
  • Stephanie Hoeppener

Beilstein J. Nanotechnol. 2021, 12, 541–551, doi:10.3762/bjnano.12.44

Graphical Abstract
  • on the SERS activity of the substrates and a carbonate buffer at pH 10 was found to even improve SERS performance. This study represents a guideline on the stability of microwave-fabricated SERS substrates or other SERS substrates consisting of non-stabilized silver nanoparticles for the application
  • of different organic solvents and buffer solutions. Keywords: chemical stability; microwave synthesis; scanning electron microscopy; silver nanoparticles; surface-enhanced Raman spectroscopy; Introduction Surface-enhanced Raman spectroscopy (SERS) has been developed into a standard analytical tool
  • glass capillaries or on scanning force microscopy tips) in a very economic and fast (less than five minutes) coating process. The formed substrates, which are coated with a monolayer of silver nanoparticles, have been demonstrated to be highly reproducible and to perform very well in the detection of
PDF
Album
Supp Info
Full Research Paper
Published 11 Jun 2021

Surface-enhanced Raman scattering of water in aqueous dispersions of silver nanoparticles

  • Paulina Filipczak,
  • Krzysztof Hałagan,
  • Jacek Ulański and
  • Marcin Kozanecki

Beilstein J. Nanotechnol. 2021, 12, 497–506, doi:10.3762/bjnano.12.40

Graphical Abstract
  • Raman scattering (SERS) effect. In this work, we show the SERS effect for water molecules in the dispersion of silver nanoparticles (AgNPs) without any external electrical field. An enhancement factor was estimated to be (4.8 ± 0.8) × 106 for an excitation wavelength of 514.5 nm and for AgNPs with an
  • effect weaker [20]. Silver nanoparticles (AgNPs) are gaining more and more popularity in various applications, such as electronics [22], photonics [23], and medicine [24]. Silver nanocolloids are also commonly used as an enhancing substrate in surface-enhanced Raman scattering (SERS) [25][26]. Since the
  • , spontaneous and stimulated Raman surface enhancement of the signal of liquid water in an aqueous dispersion of silver nanoparticles [35]. High enhancement factors (in the magnitude of 106) were obtained for the results from both techniques. In this work, further investigations on the SERS effect for water
PDF
Album
Supp Info
Full Research Paper
Published 25 May 2021

A review on nanostructured silver as a basic ingredient in medicine: physicochemical parameters and characterization

  • Gabriel M. Misirli,
  • Kishore Sridharan and
  • Shirley M. P. Abrantes

Beilstein J. Nanotechnol. 2021, 12, 440–461, doi:10.3762/bjnano.12.36

Graphical Abstract
  • . Thenhipalam 673635, Kerala, India National Institute for Quality Control in Health, Oswaldo Cruz Foundation (INCQS, FIOCRUZ), Rio de Janeiro, RJ, Brazil 10.3762/bjnano.12.36 Abstract Recent studies with silver nanoparticles (AgNPs) and the history of silver metal as a broad-spectrum bactericidal and
  • studies of this promising agent in nanomedicine and in clinical practice. Keywords: bactericidal agent; {111} facets; mechanism of action; silver ion; silver nanoparticles; quality control; virucidal agent; Review Introduction Silver is one of the oldest bactericidal agents in history and is also
  • , advised Alexander the Great (335 BC) to add silver to his water [1][2][3]. Since then, the bactericidal effect of silver nanoparticles (AgNPs) has been studied and several experimental evidences have greatly improved the understanding of its mechanism and effects on the human body and on the environment
PDF
Album
Supp Info
Review
Published 14 May 2021

Characterization, bio-uptake and toxicity of polymer-coated silver nanoparticles and their interaction with human peripheral blood mononuclear cells

  • Sahar Pourhoseini,
  • Reilly T. Enos,
  • Angela E. Murphy,
  • Bo Cai and
  • Jamie R. Lead

Beilstein J. Nanotechnol. 2021, 12, 282–294, doi:10.3762/bjnano.12.23

Graphical Abstract
  • , Columbia, SC, 29208, United States 10.3762/bjnano.12.23 Abstract Silver nanoparticles (AgNPs) are widely used in medical applications due to their antibacterial and antiviral properties. Despite the extensive study of AgNPs, their toxicity and their effect on human health is poorly understood, as a result
  • applications [2]. NPs are present in numerous commercial products such as cosmetics, electronics, and textiles. Also, they are widely used in industry, including various biomedical and drug-delivery applications for the treatment of diseases [3][4][5][6]. Silver nanoparticles (AgNPs) are one of the most
  • , characterization, and study of transformations to obtain a better understanding of NP uptake and toxicity. Statistical analysis indicated that there might be an individual variability in response to NPs, although more research is required. Keywords: human peripheral blood mononuclear cells; silver ions; silver
PDF
Album
Supp Info
Full Research Paper
Published 24 Mar 2021

A review on the biological effects of nanomaterials on silkworm (Bombyx mori)

  • Sandra Senyo Fometu,
  • Guohua Wu,
  • Lin Ma and
  • Joan Shine Davids

Beilstein J. Nanotechnol. 2021, 12, 190–202, doi:10.3762/bjnano.12.15

Graphical Abstract
  • ), graphene oxide, silver nanoparticles (Ag NPs) [24][25][26], quantum dots, and superparamagnetic particles [27] have been reported to have antibacterial properties against Streptococcus mutans [28] and Xanthomonas perforans, antifungal properties against Fusarium oxysporum [27] and Fusarium graminearum [29
  • packaging [53]. There is a need to improve food packaging quality to reduce food spoilage caused by pests and also to enhance the shelf life of food products. Nanomaterials are used as an additive in food packaging [54]. Silver nanoparticles, for example, were used as an additive in the manufacture of food
PDF
Album
Review
Published 12 Feb 2021

A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures

  • Sina Kaabipour and
  • Shohreh Hemmati

Beilstein J. Nanotechnol. 2021, 12, 102–136, doi:10.3762/bjnano.12.9

Graphical Abstract
  • characteristics including antimicrobial activity, electrical conductivity, thermal conductivity, optical characteristics, and mechanical properties. The antimicrobial characteristic of silver nanoparticles (AgNPs) has made them highly applicable in the biomedical and therapeutic fields [69][70][71]. Currently
  • permeability and leads to bacterial death [71][76]. Another therapeutic approach lies in the bactericidal activity of functionalized silver nanoparticles coated on surfaces. This method is applicable in developing aseptic catheters to prevent catheter-related infections such as urinary tract and venous
  • method is primarily used for large-scale production in a short amount of time [137]. The bottom-up approach, however, mostly relies on the use of reducing agents for the production of silver nanoparticles. This approach is also categorized into two distinguishable, but not completely disparate, set of
PDF
Album
Review
Published 25 Jan 2021

Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action

  • Matías Guerrero Correa,
  • Fernanda B. Martínez,
  • Cristian Patiño Vidal,
  • Camilo Streitt,
  • Juan Escrig and
  • Carol Lopez de Dicastillo

Beilstein J. Nanotechnol. 2020, 11, 1450–1469, doi:10.3762/bjnano.11.129

Graphical Abstract
  • irradiation time. For example, while Tan et al. [31] obtained spherical silver nanoparticles, Zhou et al. [32] obtained plate-like triangles. Another method used is the pulsed laser ablation technique which is used to synthesize colloidal solutions of Ag [33], Au [34], MgO [35], and ZnO [36] NPs, among others
  • et al. (2019) used fruit peel waste to synthesize silver nanoparticles with antimicrobial activity against foodborne pathogens [93]. Ibrahim et al. (2015) have also synthesized spherical silver nanoparticles (23.7 nm) by using banana peels. These Ag NPs have exhibited antimicrobial activity against
  • provide strong and extended antimicrobial activity at smaller dosages against a broad range of microorganisms due to their dimensions and shapes [96]. Table 3 shows some examples of potential antimicrobial metallic NPs. Silver nanoparticles have been considered one of the most interesting antimicrobial
PDF
Album
Review
Published 25 Sep 2020

Photothermally active nanoparticles as a promising tool for eliminating bacteria and biofilms

  • Mykola Borzenkov,
  • Piersandro Pallavicini,
  • Angelo Taglietti,
  • Laura D’Alfonso,
  • Maddalena Collini and
  • Giuseppe Chirico

Beilstein J. Nanotechnol. 2020, 11, 1134–1146, doi:10.3762/bjnano.11.98

Graphical Abstract
  • results regarding antibacterial activity. The advances in the field of nanomaterials exhibiting antibacterial activity are well summarized in recent reviews [1][7][8][9]. In particular, the antibacterial properties of silver nanoparticles (Ag NPs) and Ag-NP-based polymeric materials are the most
  • nanoparticles are due to the resonant oscillation of the surface electrons, called surface plasmons (e.g., plasmonic gold and silver nanoparticles) [38], or they are due to the energy of the band transitions (e.g., Cu2+ d–d transition in CuS nanoparticles) [39]. Under visible–NIR light irradiation, these
  • of the antibacterial ions can act synergistically with the NIR-induced hyperthermia to eliminate the bacteria and biofilm. Silver nanoparticles that absorb in the NIR spectral range can be used for the photothermal elimination of bacteria and this physical effect can be enhanced by both the release
PDF
Album
Review
Published 31 Jul 2020

Gram-scale synthesis of splat-shaped Ag–TiO2 nanocomposites for enhanced antimicrobial properties

  • Mohammad Jaber,
  • Asim Mushtaq,
  • Kebiao Zhang,
  • Jindan Wu,
  • Dandan Luo,
  • Zihan Yi,
  • M. Zubair Iqbal and
  • Xiangdong Kong

Beilstein J. Nanotechnol. 2020, 11, 1119–1125, doi:10.3762/bjnano.11.96

Graphical Abstract
  • . The improvement in the antibacterial activity was attributed to the synergistic effect of the hybrid nature of TiO2 nanoparticles in the presence of Ag. Keywords: antimicrobial properties; biomaterials; nanocomposites; silver nanoparticles; titanium dioxide; Introduction The rapid industrial
PDF
Album
Full Research Paper
Published 29 Jul 2020

Applications of superparamagnetic iron oxide nanoparticles in drug and therapeutic delivery, and biotechnological advancements

  • Maria Suciu,
  • Corina M. Ionescu,
  • Alexandra Ciorita,
  • Septimiu C. Tripon,
  • Dragos Nica,
  • Hani Al-Salami and
  • Lucian Barbu-Tudoran

Beilstein J. Nanotechnol. 2020, 11, 1092–1109, doi:10.3762/bjnano.11.94

Graphical Abstract
  • microscopy (EM), iron oxide magnetic beads for the separation of cells and molecules, gold and silver nanoparticles as fiducials for EM, for immuno-EM labeling and surface-enhanced Raman spectroscopy, or for gene transfection, liposomes for drug delivery, and gadolinium or iron oxide nanoparticles for
PDF
Album
Review
Published 27 Jul 2020

Wet-spinning of magneto-responsive helical chitosan microfibers

  • Dorothea Brüggemann,
  • Johanna Michel,
  • Naiana Suter,
  • Matheus Grande de Aguiar and
  • Michael Maas

Beilstein J. Nanotechnol. 2020, 11, 991–999, doi:10.3762/bjnano.11.83

Graphical Abstract
  • ]. Additionally, by using either wet-spinning or electrospinning techniques, nanoparticles can be suspended into the viscous spinning solution and embedded into the fiber matrix. For example, silver nanoparticles have been incorporated into electrospun chitosan fibers enabling antibacterial activity in wound
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2020

Hexagonal boron nitride: a review of the emerging material platform for single-photon sources and the spin–photon interface

  • Stefania Castelletto,
  • Faraz A. Inam,
  • Shin-ichiro Sato and
  • Alberto Boretti

Beilstein J. Nanotechnol. 2020, 11, 740–769, doi:10.3762/bjnano.11.61

Graphical Abstract
PDF
Album
Review
Published 08 May 2020

Silver-decorated gel-shell nanobeads: physicochemical characterization and evaluation of antibacterial properties

  • Marta Bartel,
  • Katarzyna Markowska,
  • Marcin Strawski,
  • Krystyna Wolska and
  • Maciej Mazur

Beilstein J. Nanotechnol. 2020, 11, 620–630, doi:10.3762/bjnano.11.49

Graphical Abstract
  • of composite nanobeads with antibacterial properties. The particles consist of polystyrene cores that are surrounded by sulfonic gel shells with embedded silver nanoparticles. The nanocomposite beads are prepared by sulfonation of polystyrene particles followed by accumulation of silver ions in the
  • layer producing silver nanoparticles but also transforms a fraction of sulfonic groups in the polymer to moieties with sulfur in a lower oxidation state, likely thiols. It is hypothesized that the generated thiol groups are anchoring the nanoparticles in the gel shell of the nanobeads stabilizing the
  • inhibitory (MBIC) concentrations are comparable to those of non-incorporated silver nanoparticles. Keywords: Escherichia coli; gel-shell particles; minimum biofilm inhibitory concentration (MBIC); minimum inhibitory concentration (MIC); nanocomposites; Pseudomonas aeruginosa; silver nanoparticles
PDF
Album
Full Research Paper
Published 14 Apr 2020
Other Beilstein-Institut Open Science Activities