Search results

Search for "surface energy" in Full Text gives 222 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

A non-enzymatic electrochemical hydrogen peroxide sensor based on copper oxide nanostructures

  • Irena Mihailova,
  • Vjaceslavs Gerbreders,
  • Marina Krasovska,
  • Eriks Sledevskis,
  • Valdis Mizers,
  • Andrejs Bulanovs and
  • Andrejs Ogurcovs

Beilstein J. Nanotechnol. 2022, 13, 424–436, doi:10.3762/bjnano.13.35

Graphical Abstract
  • short time. The particles begin to agglomerate in order to minimize the total surface energy, forming spherical seeds, which, according to the mechanism of dissolution–secondary precipitation [78][80], overgrow with CuO petals, thereby forming 3D structures in solution. Then, under the influence of
PDF
Album
Full Research Paper
Published 03 May 2022

A comprehensive review on electrospun nanohybrid membranes for wastewater treatment

  • Senuri Kumarage,
  • Imalka Munaweera and
  • Nilwala Kottegoda

Beilstein J. Nanotechnol. 2022, 13, 137–159, doi:10.3762/bjnano.13.10

Graphical Abstract
PDF
Album
Review
Published 31 Jan 2022

Theranostic potential of self-luminescent branched polyethyleneimine-coated superparamagnetic iron oxide nanoparticles

  • Rouhollah Khodadust,
  • Ozlem Unal and
  • Havva Yagci Acar

Beilstein J. Nanotechnol. 2022, 13, 82–95, doi:10.3762/bjnano.13.6

Graphical Abstract
  • stabilized magnetic nanoparticles [60]. The antibody conjugation may stabilize the particles further, preventing aggregation and hence reducing the hydrodynamic size [61]. Therefore, Erb conjugation may result in a reduction of the surface energy of magnetic nanoparticles and pave the way for a decrease in
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2022

Biocompatibility and cytotoxicity in vitro of surface-functionalized drug-loaded spinel ferrite nanoparticles

  • Sadaf Mushtaq,
  • Khuram Shahzad,
  • Tariq Saeed,
  • Anwar Ul-Hamid,
  • Bilal Haider Abbasi,
  • Nafees Ahmad,
  • Waqas Khalid,
  • Muhammad Atif,
  • Zulqurnain Ali and
  • Rashda Abbasi

Beilstein J. Nanotechnol. 2021, 12, 1339–1364, doi:10.3762/bjnano.12.99

Graphical Abstract
  • , magnetite NPs have some serious limitations, such as chemical reactivity, rapid oxidation, particle agglomeration, and high surface energy which may affect their biocompatibility and performance [11]. Moreover, they have low magnetization at a smaller size and the presence of iron has been associated with
PDF
Album
Full Research Paper
Published 02 Dec 2021

Morphology-driven gas sensing by fabricated fractals: A review

  • Vishal Kamathe and
  • Rupali Nagar

Beilstein J. Nanotechnol. 2021, 12, 1187–1208, doi:10.3762/bjnano.12.88

Graphical Abstract
  • , respectively, termed as Gibbs–Marangoni concerning surface tension gradients and Bénard–Marangoni concerning thermal gradients [58][59][60][61][62]. The pattern and shape of the fractals depend on flux, thermal energy, surface energy, and diffusion coefficient of the clusters. The schematic shown in Figure 4
PDF
Album
Supp Info
Review
Published 09 Nov 2021

Criteria ruling particle agglomeration

  • Dieter Vollath

Beilstein J. Nanotechnol. 2021, 12, 1093–1100, doi:10.3762/bjnano.12.81

Graphical Abstract
  • direction of a minimum of the free enthalpy. In this context, one may observe mechanisms leading to a reduction of the surface energy or controlled by the van der Waals interaction. Additionally, the ensemble may arrange in the direction of a maximum of the entropy. Simulations based on Monte Carlo methods
  • of an agglomerated ensemble, that is, an exponential function characterized by two parameters. In this context, it is important to realize that one has to take care of fluctuations of the entropy. Keywords: agglomeration; enthalpy; entropy; simulation; surface energy; van der Waals interaction
  • distribution function for each possible arrangement [10]. However, generally, this arrangement is unknown. Furthermore, this term contains the change of the surface energy between the starting arrangement and the agglomerated state. Looking at the agglomeration of nanoparticles, the binding energy of two
PDF
Album
Full Research Paper
Published 29 Sep 2021

Silver nanoparticles nucleated in NaOH-treated halloysite: a potential antimicrobial material

  • Yuri B. Matos,
  • Rodrigo S. Romanus,
  • Mattheus Torquato,
  • Edgar H. de Souza,
  • Rodrigo L. Villanova,
  • Marlene Soares and
  • Emilson R. Viana

Beilstein J. Nanotechnol. 2021, 12, 798–807, doi:10.3762/bjnano.12.63

Graphical Abstract
  • , displaying fewer particle clusters and far more nanoscaled dots, suggesting a better dispersion of particles in the LDPE matrix. The antimicrobial properties of Ag-NPs are associated with the release of Ag+ ions [39] and this release is correlated with the surface energy of nanoparticles. Thus, the higher
  • antimicrobial surface activity obtained with Ag/HNT-8/DIO is consistent with expectations, as well dispersed nanoparticles tend to have higher surface energy. The difference in aggregation between both samples may be explained in terms of matrix polarity. Polymer molecules are polarized to some degree
PDF
Album
Full Research Paper
Published 05 Aug 2021

Reducing molecular simulation time for AFM images based on super-resolution methods

  • Zhipeng Dou,
  • Jianqiang Qian,
  • Yingzi Li,
  • Rui Lin,
  • Jianhai Wang,
  • Peng Cheng and
  • Zeyu Xu

Beilstein J. Nanotechnol. 2021, 12, 775–785, doi:10.3762/bjnano.12.61

Graphical Abstract
  • angle is 70°, and the hemispherical tip radius is 16 Å. We calculate the surface energy maps with a four-layer graphite and gold samples. The dimensions of the graphite and gold substrates are 9 × 9 × 1.1 and 9 × 9 × 0.4 nm3, respectively. All simulations are performed under equal height conditions. The
PDF
Album
Full Research Paper
Published 29 Jul 2021

Spontaneous shape transition of MnxGe1−x islands to long nanowires

  • S. Javad Rezvani,
  • Luc Favre,
  • Gabriele Giuli,
  • Yiming Wubulikasimu,
  • Isabelle Berbezier,
  • Augusto Marcelli,
  • Luca Boarino and
  • Nicola Pinto

Beilstein J. Nanotechnol. 2021, 12, 366–374, doi:10.3762/bjnano.12.30

Graphical Abstract
  • = α0, with: where e is the Neper number, ϕ = e−3/2cot(θ), with θ the contact angle of the island facet with the substrate. Γ = γecsc(θ) − γscot(θ) with γe and γs are the surface energy per unit area of the edge facet and the substrate, respectively. , where σb, ν and μ are the stress tensor in the
PDF
Album
Full Research Paper
Published 28 Apr 2021

The role of gold atom concentration in the formation of Cu–Au nanoparticles from the gas phase

  • Yuri Ya. Gafner,
  • Svetlana L. Gafner,
  • Darya A. Ryzkova and
  • Andrey V. Nomoev

Beilstein J. Nanotechnol. 2021, 12, 72–81, doi:10.3762/bjnano.12.6

Graphical Abstract
  • shape corresponding to a minimum of surface energy. Therefore, we can conclude that the Cu3Au clusters precisely hit the substrate in the liquid state through collision, which corroborates the HRTEM image of a flat 2D nanoparticle [3]. Since particles with a maximum size of 5.5 nm (approx. 7000 atoms
  • reduce the surface energy of the liquid droplets when they are combined, it is often energetically advantageous to separate them again into several parts. It is clear that the lower the binding energy between the atoms, the greater the extent to which these processes will occur, as observed in the case
PDF
Album
Full Research Paper
Published 19 Jan 2021

Direct observation of the Si(110)-(16×2) surface reconstruction by atomic force microscopy

  • Tatsuya Yamamoto,
  • Ryo Izumi,
  • Kazushi Miki,
  • Takahiro Yamasaki,
  • Yasuhiro Sugawara and
  • Yan Jun Li

Beilstein J. Nanotechnol. 2020, 11, 1750–1756, doi:10.3762/bjnano.11.157

Graphical Abstract
  • on the lower terrace are the same in either phase. Note that only phase A actually exists and the surface energy of phase A should be lower than that of phase B; that is, both atom 1 and 2 can not be removed simultaneously. Therefore, atom 2 must exist, however we could not observe it because the tip
PDF
Album
Letter
Published 19 Nov 2020

High-responsivity hybrid α-Ag2S/Si photodetector prepared by pulsed laser ablation in liquid

  • Raid A. Ismail,
  • Hanan A. Rawdhan and
  • Duha S. Ahmed

Beilstein J. Nanotechnol. 2020, 11, 1596–1607, doi:10.3762/bjnano.11.142

Graphical Abstract
  • energy of the NPs. The surfaces of spherical particles have high-index crystallographic planes, which increase the surface energy of synthesized NPs [35]. The average particle size was approximately 40 ± 5 nm, and the agglomerated particles tended to form large particles. The Ag2S NPs prepared in the
  • the product after adding CTAB. TEM images of the Ag2S NPs synthesized with and without CTAB are shown in Figure 6. The TEM image shown in Figure 6a confirms that the Ag2S particles prepared in pure Tu had a spherical morphology and different sizes due to the agglomeration effect of the high surface
PDF
Album
Full Research Paper
Published 21 Oct 2020

Analysis of catalyst surface wetting: the early stage of epitaxial germanium nanowire growth

  • Owen C. Ernst,
  • Felix Lange,
  • David Uebel,
  • Thomas Teubner and
  • Torsten Boeck

Beilstein J. Nanotechnol. 2020, 11, 1371–1380, doi:10.3762/bjnano.11.121

Graphical Abstract
  • difference between the surface energy of the pristine substrate, γS, and the sum of the surface energy values of the wetted substrate (γSF + γF): In an ideal van der Waals system, it can be shown that the surface energy values are also associated with polarizability [34]. For real systems, however, it is
  • more precise to use experimentally measured surface energy values that are listed in the literature for many materials. However, the determination of the surface energy between substrate and fluid, also called the interfacial energy, γSF, can be more challenging. Thus the following three methods were
  • hysteresis effects, making the interpretation of the results even more complicated [39]. ii. The vW model: As mentioned before, the surface energy values are also connected with the polarizability of the system (i.e., with the Hamaker constants). In order to approximate the interfacial energy, it can be
PDF
Album
Supp Info
Full Research Paper
Published 09 Sep 2020

Atomic defect classification of the H–Si(100) surface through multi-mode scanning probe microscopy

  • Jeremiah Croshaw,
  • Thomas Dienel,
  • Taleana Huff and
  • Robert Wolkow

Beilstein J. Nanotechnol. 2020, 11, 1346–1360, doi:10.3762/bjnano.11.119

Graphical Abstract
  • ) (100) surface would, by argument of the crystal geometry, extend two unsatisfied bonds into vacuum. To minimize the surface energy, each silicon atom bonds with a neighbouring Si atom to create a dimer, thus reducing the number of dangling bonds (DBs) by half [13]. Rows consisting of many of these
PDF
Album
Supp Info
Full Research Paper
Published 07 Sep 2020

Photothermally active nanoparticles as a promising tool for eliminating bacteria and biofilms

  • Mykola Borzenkov,
  • Piersandro Pallavicini,
  • Angelo Taglietti,
  • Laura D’Alfonso,
  • Maddalena Collini and
  • Giuseppe Chirico

Beilstein J. Nanotechnol. 2020, 11, 1134–1146, doi:10.3762/bjnano.11.98

Graphical Abstract
  • of Ag+ and by the so-called nanomechanical effect (i.e., a disruptive phenomenon that is generated by the high NP surface energy at the bacterial membrane) [69]. A reproducible synthetic method was developed to grow anisotropic silver nanoplates on glass with a LSPR absorption tunable in the NIR
PDF
Album
Review
Published 31 Jul 2020

Vibration analysis and pull-in instability behavior in a multiwalled piezoelectric nanosensor with fluid flow conveyance

  • Sayyid H. Hashemi Kachapi

Beilstein J. Nanotechnol. 2020, 11, 1072–1081, doi:10.3762/bjnano.11.92

Graphical Abstract
  • nonlinear buckling and postbuckling behavior of functionally graded piezoelectric cylindrical nanoshells were studied by Fang et al. using the surface energy effect [21][22]. Also, Zhu et al. utilized the surface energy effect to investigate a new approach for smart control of nonlinear free vibration of
PDF
Album
Supp Info
Full Research Paper
Published 21 Jul 2020

A few-layer graphene/chlorin e6 hybrid nanomaterial and its application in photodynamic therapy against Candida albicans

  • Selene Acosta,
  • Carlos Moreno-Aguilar,
  • Dania Hernández-Sánchez,
  • Beatriz Morales-Cruzado,
  • Erick Sarmiento-Gomez,
  • Carla Bittencourt,
  • Luis Octavio Sánchez-Vargas and
  • Mildred Quintana

Beilstein J. Nanotechnol. 2020, 11, 1054–1061, doi:10.3762/bjnano.11.90

Graphical Abstract
  • Discussion The liquid phase exfoliation of graphite was first carried out in toxic, non-biocompatible solvents due to the match in the surface energy of graphene and the solvents [33]. However, the interest in using graphene for biological applications has led to the development of new synthetic techniques
PDF
Album
Full Research Paper
Published 17 Jul 2020

Quantitative determination of the interaction potential between two surfaces using frequency-modulated atomic force microscopy

  • Nicholas Chan,
  • Carrie Lin,
  • Tevis Jacobs,
  • Robert W. Carpick and
  • Philip Egberts

Beilstein J. Nanotechnol. 2020, 11, 729–739, doi:10.3762/bjnano.11.60

Graphical Abstract
  • hydrogen- and oxygen-termination, as well as chemical aging of the diamond surface can lead to significant variations in surface energy [63]. Furthermore, a loss of hydrogen termination of the diamond surface could result in CHx defects [64][65] as well C–C dimer surface reconstruction [66]. Therefore, a
PDF
Album
Full Research Paper
Published 06 May 2020

Synthesis and enhanced photocatalytic performance of 0D/2D CuO/tourmaline composite photocatalysts

  • Changqiang Yu,
  • Min Wen,
  • Zhen Tong,
  • Shuhua Li,
  • Yanhong Yin,
  • Xianbin Liu,
  • Yesheng Li,
  • Tongxiang Liang,
  • Ziping Wu and
  • Dionysios D. Dionysiou

Beilstein J. Nanotechnol. 2020, 11, 407–416, doi:10.3762/bjnano.11.31

Graphical Abstract
  • and higher specific surface area compared with its bulk counterpart [11][12]. However, the agglomeration of nanoscale CuO results from the high surface energy and the quick recombination of the photoinduced charge carriers and restricts the photocatalytic activity [13][14]. At present, the
PDF
Album
Supp Info
Full Research Paper
Published 02 Mar 2020

Size effects of graphene nanoplatelets on the properties of high-density polyethylene nanocomposites: morphological, thermal, electrical, and mechanical characterization

  • Tuba Evgin,
  • Alpaslan Turgut,
  • Georges Hamaoui,
  • Zdenko Spitalsky,
  • Nicolas Horny,
  • Matej Micusik,
  • Mihai Chirtoc,
  • Mehmet Sarikanat and
  • Maria Omastova

Beilstein J. Nanotechnol. 2020, 11, 167–179, doi:10.3762/bjnano.11.14

Graphical Abstract
  • vol % (2.05–26.81 wt %) of GnP concentration. Results and Discussion Characterization The SEM micrographs of each type of GnP and nanocomposites with 5.52 vol % GnPs are presented in Figure 1. The aggregated forms of the GnPs were observed due to their high surface energy. Figure 1 indicated that the
  • GnPs in HDPE were observed: separately dispersed and aggregated. The observed aggregates of GnPs, especially G3, may have been attributed to the large aspect ratio and high surface energy of the GnPs. In particullar, G1 nanoflakes were more isolated from each other, while G2 nanoflakes were found to be
PDF
Album
Supp Info
Full Research Paper
Published 14 Jan 2020

The effect of heat treatment on the morphology and mobility of Au nanoparticles

  • Sven Oras,
  • Sergei Vlassov,
  • Simon Vigonski,
  • Boris Polyakov,
  • Mikk Antsov,
  • Vahur Zadin,
  • Rünno Lõhmus and
  • Karine Mougin

Beilstein J. Nanotechnol. 2020, 11, 61–67, doi:10.3762/bjnano.11.6

Graphical Abstract
  • (1000 K) show that the NPs become rounded by a diffusion process that minimizes the surface energy. The process combines minimizing the surface area and transitioning to the lower energy surface types {111} and {100}. In AFM manipulation experiments, it was found that the higher the annealing
PDF
Album
Full Research Paper
Published 06 Jan 2020

Formation of metal/semiconductor Cu–Si composite nanostructures

  • Natalya V. Yumozhapova,
  • Andrey V. Nomoev,
  • Vyacheslav V. Syzrantsev and
  • Erzhena C. Khartaeva

Beilstein J. Nanotechnol. 2019, 10, 2497–2504, doi:10.3762/bjnano.10.240

Graphical Abstract
  • components. The reason of the formation of such a particle is the difference in the surface energy between the silicon and copper components. It becomes insignificant, especially for silicon particles located at large distance from the central copper part. The second reason is that silicon has a higher
PDF
Album
Full Research Paper
Published 13 Dec 2019

Improved adsorption and degradation performance by S-doping of (001)-TiO2

  • Xiao-Yu Sun,
  • Xian Zhang,
  • Xiao Sun,
  • Ni-Xian Qian,
  • Min Wang and
  • Yong-Qing Ma

Beilstein J. Nanotechnol. 2019, 10, 2116–2127, doi:10.3762/bjnano.10.206

Graphical Abstract
  • the differently exposed crystal faces have different atomic and electronic structures and surface energy. This results in differences in the adsorption capacity regarding pollutant molecules and in the electron transfer properties of TiO2 [8][9]. It is widely believed that the exposed (001) face has a
PDF
Album
Full Research Paper
Published 01 Nov 2019

The importance of design in nanoarchitectonics: multifractality in MACE silicon nanowires

  • Stefania Carapezzi and
  • Anna Cavallini

Beilstein J. Nanotechnol. 2019, 10, 2094–2102, doi:10.3762/bjnano.10.204

Graphical Abstract
  • energy required to separate the surfaces of the two pillars by dL. γsup is the surface energy of the pillar, c0 is the contact width at equilibrium of the two pillars under no external force, and Uc is the stored elastic energy normalized to the contact length due to the deformation near the contact
PDF
Album
Full Research Paper
Published 31 Oct 2019

Nanostructured and oriented metal–organic framework films enabling extreme surface wetting properties

  • Andre Mähringer,
  • Julian M. Rotter and
  • Dana D. Medina

Beilstein J. Nanotechnol. 2019, 10, 1994–2003, doi:10.3762/bjnano.10.196

Graphical Abstract
  • were synthesized as highly crystalline bulk materials. The M-CAT-1 surface energy was estimated by contact angle measurements using pellet samples exposing nonoriented crystallites on the surface. Next, oriented and compact Co- and Ni-CAT-1 films were deposited on gold surfaces by vapor-assisted
  • feature an amphiphilic character, namely hydrophilic and superolephilic properties. This amphiphilic wetting property can be attributed to the high surface energy of the MOF materials. To estimate the corresponding MOF surface energy, we applied Fowker’s theory, where the observed CA between a liquid and
  • a solid is related to the sum of a polar and dispersive components of the liquid’s surface tension [68]. Utilizing the measured CAs of diiodomethane exhibiting solely a dispersive component and water, having a dispersive and polar components, enabled the calculation of the overall surface energy for
PDF
Album
Supp Info
Full Research Paper
Published 09 Oct 2019
Other Beilstein-Institut Open Science Activities