Search results

Search for "wettability" in Full Text gives 122 result(s) in Beilstein Journal of Nanotechnology.

Design of a biomimetic, small-scale artificial leaf surface for the study of environmental interactions

  • Miriam Anna Huth,
  • Axel Huth,
  • Lukas Schreiber and
  • Kerstin Koch

Beilstein J. Nanotechnol. 2022, 13, 944–957, doi:10.3762/bjnano.13.83

Graphical Abstract
  • composition play significant roles. Here, the ability of self-assembly of wax after isolation from the leaves was used to develop a small-scale wax-coated artificial leaf surface with the chemical composition and wettability of wheat (Triticum aestivum) leaves. By thermal evaporation of extracted plant waxes
  • and adjustment of the evaporated wax amounts, the wettability and chemical character of the microstructure of the surface of wheat leaves were transferred onto a technical surface. For the use of these artificial leaves as a test system for biotic (e.g., germination of fungal pathogens) and non-biotic
  • among the most common wax structures. An overview of the morphology of various wax structures has been given by Barthlott and co-workers [24]. Wetting The wettability of leaves plays an important role in the interaction of plants with the environment, such as the interaction with pathogens and the
PDF
Supp Info
Full Research Paper
Published 13 Sep 2022

Zinc oxide nanostructures for fluorescence and Raman signal enhancement: a review

  • Ioana Marica,
  • Fran Nekvapil,
  • Maria Ștefan,
  • Cosmin Farcău and
  • Alexandra Falamaș

Beilstein J. Nanotechnol. 2022, 13, 472–490, doi:10.3762/bjnano.13.40

Graphical Abstract
  • . Introducing defects reduces the optical gap, which allows for a more effective charge transfer between ZnO–Ag nanowires and the molecules attached. Also, the interstitial oxygen defects change the wettability of ZnO–Ag nanowires, which reduces the spreading of Ag NPs or probe molecules on the surface, which
PDF
Album
Review
Published 27 May 2022

Micro- and nanotechnology in biomedical engineering for cartilage tissue regeneration in osteoarthritis

  • Zahra Nabizadeh,
  • Mahmoud Nasrollahzadeh,
  • Hamed Daemi,
  • Mohamadreza Baghaban Eslaminejad,
  • Ali Akbar Shabani,
  • Mehdi Dadashpour,
  • Majid Mirmohammadkhani and
  • Davood Nasrabadi

Beilstein J. Nanotechnol. 2022, 13, 363–389, doi:10.3762/bjnano.13.31

Graphical Abstract
  • example, to modify the surface of nanofiber polymers, plasma treatment has been used to provide them with hydroxy, carboxyl, or amine polar groups to improve physical properties such as wettability, polarity, and bioadhesion [102]. As a result, surface-modified nanofibers will more likely absorb bioactive
  • , and OH) and surface roughness to CNT, Antonioli et al. used oxygen plasma treatment and fabricated novel superhydrophilic VA–CTN films. This treatment could increase the wettability of the nanofilms to acquire appreciable cytocompatibility [134]. The chondrocytes expressed major chondrogenic markers
PDF
Album
Review
Published 11 Apr 2022

Engineered titania nanomaterials in advanced clinical applications

  • Padmavati Sahare,
  • Paulina Govea Alvarez,
  • Juan Manual Sanchez Yanez,
  • Gabriel Luna-Bárcenas,
  • Samik Chakraborty,
  • Sujay Paul and
  • Miriam Estevez

Beilstein J. Nanotechnol. 2022, 13, 201–218, doi:10.3762/bjnano.13.15

Graphical Abstract
  • hydroxy groups can react with water molecules. The thus formed hydrogen bonds account for a good wettability. An annealing temperature below 450 °C still retains the hydrophilic behavior because of the combined crystalline phase (anatase and rutile), but above that temperature, the reduction of the number
  • titanium (cpTi). Thereafter, human osteoblast-like cell lines (hFOB) were cultured over annealed Ti, PCL, and PCL/TiO2 (2, 5, and 7 wt % TiO2) scaffolds. SEM images of the cell morphologies are shown in Figure 2. The addition of TiO2 nanoparticles enhances the wettability and surface area, thus favoring
PDF
Album
Review
Published 14 Feb 2022

A comprehensive review on electrospun nanohybrid membranes for wastewater treatment

  • Senuri Kumarage,
  • Imalka Munaweera and
  • Nilwala Kottegoda

Beilstein J. Nanotechnol. 2022, 13, 137–159, doi:10.3762/bjnano.13.10

Graphical Abstract
  • ][50]. Electrospun membranes have shown many advantages over conventional membranes used in water treatment/purification. Some of the common limitations of the conventional membranes are fouling, scaling, limited porosity, low mechanical strength, low permeation, low wettability, and residual solvents
  • and on increasing flux and wettability by the incorporation of fillers. 5.2.2.1 Pressure-driven filtration. Pressure-driven filtration utilizes the transmembrane pressure difference as the driving force for membrane permeation. Pressure-driven filtration is classified into MF, ultrafiltration (UF
PDF
Album
Review
Published 31 Jan 2022

A review on slip boundary conditions at the nanoscale: recent development and applications

  • Ruifei Wang,
  • Jin Chai,
  • Bobo Luo,
  • Xiong Liu,
  • Jianting Zhang,
  • Min Wu,
  • Mingdan Wei and
  • Zhuanyue Ma

Beilstein J. Nanotechnol. 2021, 12, 1237–1251, doi:10.3762/bjnano.12.91

Graphical Abstract
  • addition, as downsizing can result in an increased surface-to-volume ratio, the solid–liquid interfacial properties, such as wettability and surface roughness, become key factors in the determination of liquid properties near the interface of nanosized systems, and may dramatically affect the slip flow
  • rate as that of the complex system under the same ambient conditions and external perturbations [56]. 2 Effects of interfacial properties on slip length 2.1 Surface wettability effects 2.1.1 Variation of positive slip length. It is intuitive that the wettability of a liquid on solid surfaces could
  • limiting cases have been proposed. For periodic alternating stripes with different wettability, it was shown that the maximal and minimal effective slip length can be attained when the stripe orientation is parallel or perpendicular to the streaming flow direction, respectively. Especially, when the stripe
PDF
Album
Review
Published 17 Nov 2021

Self-assembly of Eucalyptus gunnii wax tubules and pure ß-diketone on HOPG and glass

  • Miriam Anna Huth,
  • Axel Huth and
  • Kerstin Koch

Beilstein J. Nanotechnol. 2021, 12, 939–949, doi:10.3762/bjnano.12.70

Graphical Abstract
  • protect plants from environmental stress [4]. Waxes are, thereby, essential for a variety of functions, especially in the wettability and self-cleaning ability of plant surfaces [5][6]. Plant waxes consist of a complex mixture of aliphatic and aromatic compounds. The exact chemical composition of the wax
PDF
Album
Full Research Paper
Published 20 Aug 2021

Nanoporous and nonporous conjugated donor–acceptor polymer semiconductors for photocatalytic hydrogen production

  • Zhao-Qi Sheng,
  • Yu-Qin Xing,
  • Yan Chen,
  • Guang Zhang,
  • Shi-Yong Liu and
  • Long Chen

Beilstein J. Nanotechnol. 2021, 12, 607–623, doi:10.3762/bjnano.12.50

Graphical Abstract
  • photocatalytic properties. PDI-containing polymers, such as P15, normally confer smaller HERs than the others. P18, composed of strong electron-donating and bipyridine segments, rendered the best HER, which was attributed to its enhanced light absorption, better wettability, and more efficient charge separation
  • units, among which the pyrene–pyrimidine-based P32 (Figure 4) with the lowest nitrogen content showed the highest HER. Nitrogen heterocycles within polymers could optimize wettability, bandgap, charge transport, and separation. Motivated by the planar configuration and strong electron-acceptor
  • The benzothiadiazole (BT) moiety as a strong electron acceptor features high planarity and good wettability due to incorporating N and S atoms. In 2016, Wang and co-workers [65] investigated the properties of a linear conjugated polymer and a 3D counterpart by varying the substitution position on the
PDF
Album
Review
Published 30 Jun 2021

Paper-based triboelectric nanogenerators and their applications: a review

  • Jing Han,
  • Nuo Xu,
  • Yuchen Liang,
  • Mei Ding,
  • Junyi Zhai,
  • Qijun Sun and
  • Zhong Lin Wang

Beilstein J. Nanotechnol. 2021, 12, 151–171, doi:10.3762/bjnano.12.12

Graphical Abstract
  • ., metal nanowires, conducting polymers, carbon nanotube (CNT) inks, multiwall carbon nanotube (MWCNT) inks, and reduced graphene oxide) [69][70][71][72][73][74][75][76][77][78][79][80][81][82], can be easily absorbed or used as a coating layer on the surface of the paper due to its wettability and
PDF
Album
Review
Published 01 Feb 2021

Analysis of catalyst surface wetting: the early stage of epitaxial germanium nanowire growth

  • Owen C. Ernst,
  • Felix Lange,
  • David Uebel,
  • Thomas Teubner and
  • Torsten Boeck

Beilstein J. Nanotechnol. 2020, 11, 1371–1380, doi:10.3762/bjnano.11.121

Graphical Abstract
  • between a solid and a fluid from another compound. This approach shows results that are in a good approximation with the actual value of γSF. However, the wettability of a system is not directly predictable by the free energy itself, but by the slope of its function. Accordingly, this is given by the
PDF
Album
Supp Info
Full Research Paper
Published 09 Sep 2020

Photothermally active nanoparticles as a promising tool for eliminating bacteria and biofilms

  • Mykola Borzenkov,
  • Piersandro Pallavicini,
  • Angelo Taglietti,
  • Laura D’Alfonso,
  • Maddalena Collini and
  • Giuseppe Chirico

Beilstein J. Nanotechnol. 2020, 11, 1134–1146, doi:10.3762/bjnano.11.98

Graphical Abstract
  • thiol monolayers, aiming to impart a different wettability to the surfaces [63]. It was verified that the photothermal features and the consequent hyperthermia-derived antibacterial effects were not affected by the thiol layers, which enable the eradication of at least 99.99% of the bacterial strains
PDF
Album
Review
Published 31 Jul 2020

Templating effect of single-layer graphene supported by an insulating substrate on the molecular orientation of lead phthalocyanine

  • K. Priya Madhuri,
  • Abhay A. Sagade,
  • Pralay K. Santra and
  • Neena S. John

Beilstein J. Nanotechnol. 2020, 11, 814–820, doi:10.3762/bjnano.11.66

Graphical Abstract
  • transparency disappears with an increasing number of graphene layers, and the wettability approaches that of graphite. The underlying support substrate is reported to even influence the chemical reactivity of a monolayer of graphene [15]. Most of the orientation studies of MPc on graphene deal with planar MPc
PDF
Album
Full Research Paper
Published 19 May 2020

Preparation, characterization and photocatalytic performance of heterostructured CuO–ZnO-loaded composite nanofiber membranes

  • Wei Fang,
  • Liang Yu and
  • Lan Xu

Beilstein J. Nanotechnol. 2020, 11, 631–650, doi:10.3762/bjnano.11.50

Graphical Abstract
  • crystals. In Figure 20b, the ratio between Cu and Zn is 1:1. Wetting properties of the CNFMs The influence of the CuO-ZnO heterostructures on the wettability of the CNFMs was investigated, and the morphologies and CA of CNFMs before and after heat treatment and hydrothermal growth are given in Figure 21
  • . The results show that the wettability of the CNFMs changed from hydrophobicity to hydrophilicity after heat treatment and hydrothermal growth. The main reason is that hydrophilic CuO and ZnO grows on the surface of the nanofibers. The corresponding mechanism of hydrophilicity is illustrated in Figure
PDF
Album
Full Research Paper
Published 15 Apr 2020

Soybean-derived blue photoluminescent carbon dots

  • Shanshan Wang,
  • Wei Sun,
  • Dong-sheng Yang and
  • Fuqian Yang

Beilstein J. Nanotechnol. 2020, 11, 606–619, doi:10.3762/bjnano.11.48

Graphical Abstract
  • to introduce N-surface-functional groups to carbon nanoparticles made from biomass and biowaste and to produce stable photoluminescent CDs with excellent water-wettability. Keywords: biomass; carbon dots; hydrothermal process; laser ablation; N-doping; photoluminescence; Introduction Carbon-based
  • the surface N-functionalization of carbon nanoparticles derived from biomass and biowaste and for the production of carbon nanoparticles with stable PL characteristics and excellent water-wettability. Schematic of the setup for laser ablation in liquid. TEM images of soybean-derived nanoparticles: (a
PDF
Album
Supp Info
Full Research Paper
Published 09 Apr 2020

High-performance asymmetric supercapacitor made of NiMoO4 nanorods@Co3O4 on a cellulose-based carbon aerogel

  • Meixia Wang,
  • Jing Zhang,
  • Xibin Yi,
  • Benxue Liu,
  • Xinfu Zhao and
  • Xiaochan Liu

Beilstein J. Nanotechnol. 2020, 11, 240–251, doi:10.3762/bjnano.11.18

Graphical Abstract
  • conductivity of the Mo ion [17][18][19]. Unfortunately, despite the fact that NiMoO4 has a high theoretical capacitance, its widespread practical application in supercapacitors is still restricted due to its low practical capacitance as well as the poor rate performance and wettability. Therefore, the
PDF
Album
Supp Info
Full Research Paper
Published 21 Jan 2020

An investigation on the drag reduction performance of bioinspired pipeline surfaces with transverse microgrooves

  • Weili Liu,
  • Hongjian Ni,
  • Peng Wang and
  • Yi Zhou

Beilstein J. Nanotechnol. 2020, 11, 24–40, doi:10.3762/bjnano.11.3

Graphical Abstract
  • viscous drag was mainly caused by the above effects. (2) Wettability: Jung and co-workers [41] found through experiments that microstructures with a higher contact angle provided a higher reduction of pressure drop in both laminar and turbulent water flows. Since surface wettability had a significant
  • influence on the turbulent flow drag, the contact angle of the experimental specimen was measured by the sessile drop method to investigate the impact of the microgrooves on the wettability of the pipeline surface. As shown in Figure 20, the contact angles were 68 and 99° on the smooth and the microgrooved
  • . Conclusion In this study, the feasibility of applying bionic theory to pipeline surfaces to reduce the drag was investigated by numerical simulations and experimental methods. Besides, the drag reduction mechanism of transverse microgrooves was revealed in terms of flow field characteristics and wettability
PDF
Album
Full Research Paper
Published 03 Jan 2020

Evaluation of click chemistry microarrays for immunosensing of alpha-fetoprotein (AFP)

  • Seyed Mohammad Mahdi Dadfar,
  • Sylwia Sekula-Neuner,
  • Vanessa Trouillet,
  • Hui-Yu Liu,
  • Ravi Kumar,
  • Annie K. Powell and
  • Michael Hirtz

Beilstein J. Nanotechnol. 2019, 10, 2505–2515, doi:10.3762/bjnano.10.241

Graphical Abstract
  • detection. To this end, a sandwich strategy is employed by attaching a second biotinylated antibody and a fluorescently labeled streptavidin. Further sensitivity improvements are expected upon utilizing novel antifouling and special wettability surfaces [43][44]. Our results highlight the utility of binding
PDF
Album
Supp Info
Full Research Paper
Published 16 Dec 2019

Self-assembly of a terbium(III) 1D coordination polymer on mica

  • Quentin Evrard,
  • Giuseppe Cucinotta,
  • Felix Houard,
  • Guillaume Calvez,
  • Yan Suffren,
  • Carole Daiguebonne,
  • Olivier Guillou,
  • Andrea Caneschi,
  • Matteo Mannini and
  • Kevin Bernot

Beilstein J. Nanotechnol. 2019, 10, 2440–2448, doi:10.3762/bjnano.10.234

Graphical Abstract
  • probable, relies on the presence of water on the air-cleaved mica surface, leading to the formation of [Tb(hfac)3·2H2O]n chains. Indeed, reactions between the mica surface, atmospheric CO2 and water occur instantaneously after cleavage in air [26]. The high wettability of mica under these conditions favors
PDF
Album
Supp Info
Full Research Paper
Published 10 Dec 2019

Tuning the performance of vanadium redox flow batteries by modifying the structural defects of the carbon felt electrode

  • Ditty Dixon,
  • Deepu Joseph Babu,
  • Aiswarya Bhaskar,
  • Hans-Michael Bruns,
  • Joerg J. Schneider,
  • Frieder Scheiba and
  • Helmut Ehrenberg

Beilstein J. Nanotechnol. 2019, 10, 1698–1706, doi:10.3762/bjnano.10.165

Graphical Abstract
  • process enhanced the wettability of the felt, which in turn facilitates the adsorption of the V2+/V3+ ions. Apart from defects in the form of N-doping, a higher amount of edge sites formed during the N2-plasma process also influences the V3+/V2+ redox reaction. This is because the half-cell reaction is
PDF
Album
Full Research Paper
Published 13 Aug 2019

Upcycling of polyurethane waste by mechanochemistry: synthesis of N-doped porous carbon materials for supercapacitor applications

  • Christina Schneidermann,
  • Pascal Otto,
  • Desirée Leistenschneider,
  • Sven Grätz,
  • Claudia Eßbach and
  • Lars Borchardt

Beilstein J. Nanotechnol. 2019, 10, 1618–1627, doi:10.3762/bjnano.10.157

Graphical Abstract
  • carbon materials can be functionalized with heteroatoms such as nitrogen, which was reported to affect the electrical conductivity [39][40][41][42], the energy storage capacity, and the wettability of the electrodes with electrolyte [43][44][45]. Commonly, nitrogen is inserted into the carbon framework
  • -3, exhibiting a lower nitrogen content, absorbed the water after 20 s. Thus, the higher nitrogen content benefits the wettability of the carbon surface. Electrochemical characterization The produced carbon materials differ in terms of specific surface area, pore sizes, and nitrogen content
  • these materials could also be extended to other energy storage systems such as Li-ion batteries or waste-water purification, wherever materials with a high surface area and improved wettability are required. Experimental Synthesis of N-doped carbon In a similar manner to [36][64], nitrogen-doped porous
PDF
Album
Supp Info
Full Research Paper
Published 06 Aug 2019

Nanoscale optical and structural characterisation of silk

  • Meguya Ryu,
  • Reo Honda,
  • Adrian Cernescu,
  • Arturas Vailionis,
  • Armandas Balčytis,
  • Jitraporn Vongsvivut,
  • Jing-Liang Li,
  • Denver P. Linklater,
  • Elena P. Ivanova,
  • Vygantas Mizeikis,
  • Mark J. Tobin,
  • Junko Morikawa and
  • Saulius Juodkazis

Beilstein J. Nanotechnol. 2019, 10, 922–929, doi:10.3762/bjnano.10.93

Graphical Abstract
  • controllable surface wettability, anti-biofouling, anti-reflection, and biocidal/bactericidal properties [4][5]. For example, the motheye plastic films produced by roll-to-roll technology already replicate nanopillars with 100 nm separation (MOSMITE from Mitsubishi Chemicals Ltd.). The structural and optical
PDF
Album
Full Research Paper
Published 23 Apr 2019

Rapid, ultraviolet-induced, reversibly switchable wettability of superhydrophobic/superhydrophilic surfaces

  • Yunlu Pan,
  • Wenting Kong,
  • Bharat Bhushan and
  • Xuezeng Zhao

Beilstein J. Nanotechnol. 2019, 10, 866–873, doi:10.3762/bjnano.10.87

Graphical Abstract
  • and Biomimetics (NLBB), The Ohio State University, 201 W. 19th Avenue, Columbus, OH 43210-1142, USA 10.3762/bjnano.10.87 Abstract Controllable wettability is important for a wide range of applications, including intelligent switching, self-cleaning and oil/water separation. In this work, rapid
  • switching and extreme wettability changes upon ultraviolet (UV) illumination were investigated. TiO2 nanoparticles were modified in solutions of trimethoxy(alkyl)silane, and the suspensions were sprayed on glass substrates. For such samples, the water contact angle (WCA) was shown to transition from a
  • than 165° to almost 0°. To further investigate the wettability transition, trimethoxy(alkyl)silane and Al2O3 nanoparticles (which are not photocatalytic) were mixed and spray-coated onto the glass substrates as the control samples. Then the unrecoverable change of trimethoxy(alkyl)silane under UV
PDF
Album
Full Research Paper
Published 15 Apr 2019

Novel reversibly switchable wettability of superhydrophobic–superhydrophilic surfaces induced by charge injection and heating

  • Xiangdong Ye,
  • Junwen Hou and
  • Dongbao Cai

Beilstein J. Nanotechnol. 2019, 10, 840–847, doi:10.3762/bjnano.10.84

Graphical Abstract
  • Xiangdong Ye Junwen Hou Dongbao Cai School of Mechanical and Electrical Engineering, Shaanxi Key Laboratory of Nano Materials and Technology, Xi’an University of Architecture and Technology, Xi’an 710055, China 10.3762/bjnano.10.84 Abstract Reversibly switching wettability between
  • accumulation of solid–liquid interfacial charges, we discovered a phenomenon where charge injection and accumulation at the solid surface results in a sharp increase in wettability. The wettability of a sprayed SiO2 nanoparticle coating on a glass slide was shown to change from superhydrophobic to
  • superhydrophilic by charge injection and heating, and the superhydrophobicity was restored by heating, verifying a reversible superhydrophobic–superhydrophilic conversion. The influence of voltage, temperature, and time on the coating wettability and its durability under reversible conversion have been studied
PDF
Album
Full Research Paper
Published 10 Apr 2019

Self-assembly and wetting properties of gold nanorod–CTAB molecules on HOPG

  • Imtiaz Ahmad,
  • Floor Derkink,
  • Tim Boulogne,
  • Pantelis Bampoulis,
  • Harold J. W. Zandvliet,
  • Hidayat Ullah Khan,
  • Rahim Jan and
  • E. Stefan Kooij

Beilstein J. Nanotechnol. 2019, 10, 696–705, doi:10.3762/bjnano.10.69

Graphical Abstract
  • surface. The self-assembled layers of CTAB molecules on the HOPG terraces prior to nanorod deposition were shown to change the wettability of the surface, and as a result, gold nanorod deposition takes place on nonwetting HOPG terraces. Keywords: CTAB; gold nanorods; micelles; self-assembly; wettability
  • superstructures on HOPG substrates using atomic force microscopy (AFM). The assembly of CTAB molecules was investigated at various positions on the substrate. Also, the role of CTAB molecules that changes the wettability of the HOPG terraces is discussed in relation to the previous work [51]. The application of
  • the droplet. As such the wettability of the HOPG surface was transformed by establishing a hydrophilic layer underneath the nanorods. In Figure 2 AFM images reveal CTAB stripes oriented in two specific directions, as indicated by the arrows. The angle between these directions is 60° or 120°, as shown
PDF
Album
Full Research Paper
Published 13 Mar 2019

Ultraviolet patterns of flowers revealed in polymer replica – caused by surface architecture

  • Anna J. Schulte,
  • Matthias Mail,
  • Lisa A. Hahn and
  • Wilhelm Barthlott

Beilstein J. Nanotechnol. 2019, 10, 459–466, doi:10.3762/bjnano.10.45

Graphical Abstract
  • multifunctional interface. Many of its functions are determined not only by its chemical composition, but also by its surface micro- and nanoarchitecture. Superhydrophobicity [1] is the classical example which can occur even on a chemically hydrophilic surface. Not only is the wettability important, but it must
PDF
Album
Full Research Paper
Published 13 Feb 2019
Other Beilstein-Institut Open Science Activities